西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得

西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得

论文标题:StereoMV2D: A Sparse Temporal Stereo-Enhanced Framework for Robust Multi-View 3D Object Detection

作者团队:西北工业大学苏州科技大学

发布时间:2025 年 12 月 19 日

论文链接:

大模型实验室 Lab4AI 论文阅读

✔️ 研究背景

多视图 3D 物体检测需在检测精度和计算效率间取得平衡。稀疏查询基方法(如 MV2D)通过 2D 检测结果初始化 3D 查询,提供了高效的端到端检测范式,但单帧 2D 检测存在深度模糊问题,导致 3D 查询初始化不准确。

现有融合时序立体建模的方法多依赖密集代价体构建,引入大量计算与内存开销,难以兼容稀疏查询类方法的高效特性,形成研究缺口。

✔️ 研究内容

针对单帧 2D 检测的深度模糊缺陷,以及现有时序立体建模方法计算开销大的问题,本研究旨在提出一种统一框架,将时序立体建模融入稀疏查询检测范式,在保持稀疏查询类方法高效性的同时,增强深度感知能力,提升多视图 3D 目标检测的精度与鲁棒性,实现精度与效率的良好平衡。

✔️ 核心思想

1️⃣ 匹配同一物体

汽车运动、场景变化时,系统需在前一帧与当前帧图像中匹配同一物体。

论文采用 "运动感知软匹配" 模块,结合物体外观与运动趋势,建立跨帧关联。

2️⃣ 物体区域内算深度

匹配到同一物体的跨帧图像后,StereoMV2D 仅在物体对应的感兴趣区域(RoI)内开展精细立体计算,减少计算量;通过对比物体在两帧图像中的细微位移,精准计算其真实距离。

3️⃣ 智能筛选有效信息

针对现实场景中物体新出现或被遮挡的动态情况,论文设计动态置信门控机制,自动判定采用立体测量结果,还是回退至单帧图像的推测结果。

相关推荐
旷野说2 小时前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授2 小时前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
爱打代码的小林2 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
AI浩2 小时前
面向无监督多场景行人重识别的图像-文本知识建模
人工智能·目标检测
Takoony3 小时前
深度学习多卡训练必须使用偶数张GPU吗?原理深度解析
人工智能·深度学习
翱翔的苍鹰3 小时前
通俗、生动的方式 来讲解“卷积神经网络(CNN)
人工智能·神经网络·cnn
Irene.ll3 小时前
DAY31 文件的拆分方法和规范
人工智能·机器学习
真上帝的左手3 小时前
26. AI-大语言模型应用发展
人工智能
Coder_Boy_3 小时前
基于SpringAI的在线考试系统-阅卷评分模块时序图
java·人工智能·spring boot