【机器学习】吴恩达机器学习Lecture1

目录

[1-1 Introduction](#1-1 Introduction)

[Machine Learning](#Machine Learning)

Examples:

[1-2 What is machine learning](#1-2 What is machine learning)

[Machine learning definition](#Machine learning definition)

Question:

[Machine learning algorithms:](#Machine learning algorithms:)

[1-3 Supervised learning](#1-3 Supervised learning)

[Housing price prediction](#Housing price prediction)

[Breast cancer (malignant, benign)](#Breast cancer (malignant, benign))

Question:

[1-4 Unsupervised Learning](#1-4 Unsupervised Learning)

Examples:

[Cocktail party problem](#Cocktail party problem):

Question:


1-1 Introduction

Machine Learning
  • Grew out of work in AI

  • New capability for computers

Examples:

- Database mining 数据挖掘

Large datasets from growth of automation/web.

E.g., Web click data, medical records, biology, engineering

- Applications can't program by hand. 无法手动编程实现的应用

E.g., Autonomous helicopter, handwriting recognition, most of

Natural Language Processing (NLP), Computer Vision.

- Self-customizing programs 自适应程序

E.g., Amazon, Netflix product recommendations

- Understanding human learning (brain, real AI). 理解人类学习机制


1-2 What is machine learning

Machine learning definition

• Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn

without being explicitly programmed.

• Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to learnfrom experience E with respect to some task Tand some performance measure P, if itsperformance on T, as measured by P, improveswith experience E.

Question:

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting?

Machine learning algorithms:

-Supervised learning 监督学习

-Unsupervised learning 无监督学习

Others: Reinforcement learning, recommender systems. 强化学习,推荐系统

Also talk about: Practical advice for applying learning algorithms.


1-3 Supervised learning

Housing price prediction

Supervised Learning: "right answers" given

Regression回归: Predict continuous valued output (price)

Breast cancer (malignant, benign)

Classification: Discrete valued output (0 or 1) or (0, 1, 2, 3)

one feature, two features or more features

  • Tumor Size

  • Age

  • Clump Thickness

  • Uniformity of Cell Size

  • Uniformity of Cell Shape

...

Question:

You're running a company, and you want to develop learning algorithms to address each of two problems.

Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.

Problem 2: You'd like software to examine individual customer accounts, and for each account decide if it has been hacked/compromised.

Should you treat these as classification or as regression problems?


1-4 Unsupervised Learning

Examples:
  • Google news
  • Individual genes

  • Organize computing clusters
  • Social network analysis
  • Market segmentation
  • Astronomical data analysis

Cocktail party problem:

You can solve this problem by just one line program:

W,s,v\] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)\*x'); \[Source: Sam Roweis, Yair Weiss \& Eero Simoncelli

建议:先用Octave建立原型,再用C++、JAVA或Python语言实现

Question:

Of the following examples, which would you address using an unsupervised learning algorithm? (Check all that apply.)

相关推荐
老蒋每日coding2 小时前
AI Agent 设计模式系列(十五)—— A2A Agent 间通信模式
人工智能·设计模式
搞科研的小刘选手2 小时前
【智能检测专题】2026年智能检测与运动控制技术国际会议(IDMCT 2026)
人工智能·学术会议·智能计算·电子技术·智能检测·运动控制技术·南京工业大学
Elastic 中国社区官方博客2 小时前
Agent Builder 现已正式发布:在几分钟内发布上下文驱动的 agents
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索
翱翔的苍鹰2 小时前
通俗讲解在中文 NLP中要用 jieba 分词,以及它和 循环神经网络(RNN) 的关系。
人工智能·pytorch·rnn·神经网络·自然语言处理
安科瑞小许2 小时前
零碳园区:政策驱动下的智慧能源转型之路
大数据·人工智能·能源·碳排放·零碳园区
SelectDB技术团队2 小时前
构建 AI 数据基座:思必驰基于 Apache Doris 的海量多模态数据集管理实践
人工智能·apache·知识图谱
小二·2 小时前
Python Web 开发进阶实战:AI 伦理审计平台 —— 在 Flask + Vue 中构建算法偏见检测与公平性评估系统
前端·人工智能·python
WZGL12302 小时前
智能机器人:当养老遇上科技,温暖与风险并存的新时代
人工智能·科技·机器人
浮生醉清风i2 小时前
Spring Ai
java·人工智能·spring