带标注信息的大块煤识别数据集下载,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%

带标注信息的大块煤识别数据集,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%

目录

标签:

数据集拆分

分辨率

增强

数据集图片

标注信息:

数据集下载:


标签:

coal

数据集拆分

训练集
705图片
验证集:
73图片
测试集
87图片

分辨率

分辨率640*640

增强

数据集图片

标注信息:

推理结果:

{

"predictions": [

{

"x": 331.5,

"y": 483,

"width": 59,

"height": 48,

"confidence": 0.824,

"class": "coal",

"class_id": 0,

"detection_id": "f069e457-b746-4808-960a-9fa8f60efaa0"

},

{

"x": 115.5,

"y": 70.5,

"width": 165,

"height": 119,

"confidence": 0.818,

"class": "coal",

"class_id": 0,

"detection_id": "5287da43-a0e0-411d-9be4-7be9cdb95383"

},

{

"x": 272.5,

"y": 36.5,

"width": 167,

"height": 73,

"confidence": 0.792,

"class": "coal",

"class_id": 0,

"detection_id": "3c0f93f5-32d8-4a3f-9636-2e32c287b0ab"

},

{

"x": 113,

"y": 269.5,

"width": 72,

"height": 65,

"confidence": 0.791,

"class": "coal",

"class_id": 0,

"detection_id": "a46dcc1d-60e5-4f6e-b471-1f79b5026d8b"

},

{

"x": 134.5,

"y": 372.5,

"width": 57,

"height": 51,

"confidence": 0.761,

"class": "coal",

"class_id": 0,

"detection_id": "25225b93-ae25-4d62-b0e5-1c72c2b790df"

},

{

"x": 449.5,

"y": 478,

"width": 89,

"height": 36,

"confidence": 0.74,

"class": "coal",

"class_id": 0,

"detection_id": "993fb1c5-8417-4e20-bf16-58e04d5f809a"

},

{

"x": 365.5,

"y": 221,

"width": 43,

"height": 28,

"confidence": 0.68,

"class": "coal",

"class_id": 0,

"detection_id": "d88d37b4-3ea2-435e-93f4-123dff8100df"

},

{

"x": 75.5,

"y": 405,

"width": 23,

"height": 28,

"confidence": 0.655,

"class": "coal",

"class_id": 0,

"detection_id": "18d1e296-f3f9-45a3-b6c1-c5ae1368e058"

},

{

"x": 450.5,

"y": 373.5,

"width": 47,

"height": 41,

"confidence": 0.653,

"class": "coal",

"class_id": 0,

"detection_id": "22c11212-9c19-41f8-a51b-14f3998c0955"

},

{

"x": 204.5,

"y": 449.5,

"width": 63,

"height": 35,

"confidence": 0.651,

"class": "coal",

"class_id": 0,

"detection_id": "f94a09c9-f8a8-4fff-bee1-5fa25531c9fa"

},

{

"x": 15.5,

"y": 420,

"width": 23,

"height": 26,

"confidence": 0.628,

"class": "coal",

"class_id": 0,

"detection_id": "8b1be669-8322-4741-a80e-02c476567fc0"

},

{

"x": 338,

"y": 288.5,

"width": 60,

"height": 37,

"confidence": 0.605,

"class": "coal",

"class_id": 0,

"detection_id": "9b5e387c-f775-4204-86dd-2e8fd3686363"

},

{

"x": 75.5,

"y": 311,

"width": 53,

"height": 46,

"confidence": 0.596,

"class": "coal",

"class_id": 0,

"detection_id": "19191e03-f6a3-4025-95a0-a29b94188fb2"

},

{

"x": 32.5,

"y": 396.5,

"width": 23,

"height": 23,

"confidence": 0.585,

"class": "coal",

"class_id": 0,

"detection_id": "2619e0df-f7f3-4f40-a90d-4e3b10abec54"

},

{

"x": 127.5,

"y": 538,

"width": 29,

"height": 38,

"confidence": 0.512,

"class": "coal",

"class_id": 0,

"detection_id": "1d5960ac-d391-4dbe-88df-c7dfa20abc50"

}

]

}

数据集下载:

yolo26:https://download.csdn.net/download/pbymw8iwm/92589733

yolo v12:https://download.csdn.net/download/pbymw8iwm/92589735

yolo v11:https://download.csdn.net/download/pbymw8iwm/92589734

yolo v9: https://download.csdn.net/download/pbymw8iwm/92589737

yolo v8:https://download.csdn.net/download/pbymw8iwm/92589732

yolo v7:https://download.csdn.net/download/pbymw8iwm/92589736

yolo v5:https://download.csdn.net/download/pbymw8iwm/92589730

coco json: https://download.csdn.net/download/pbymw8iwm/92589738

pascal voc xml: https://download.csdn.net/download/pbymw8iwm/92589739

yolo darknet:https://download.csdn.net/download/pbymw8iwm/92589731

相关推荐
2501_942191776 小时前
【YOLOv26实战】健身器材物体检测与识别:从模型优化到实际应用
人工智能·yolo·目标跟踪
地球资源数据云6 小时前
【免费下载】中国5米分辨率坡度数据
数据分析·数据集·遥感数据
Faker66363aaa6 小时前
GSM微波天线设备识别与分类_YOLOv26模型实现_1
yolo·分类·数据挖掘
机 _ 长7 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
给算法爸爸上香7 小时前
yolo目标检测线程池高性能视频tensorrt推理(每秒1000+帧)
yolo·目标检测·音视频·线程池·tensorrt
2501_941507947 小时前
【目标检测改进】基于YOLOv26的公路护栏与灯杆检测识别系统
yolo·目标检测·目标跟踪
2501_936146048 小时前
生活垃圾智能分类与识别_YOLOv26实现金属玻璃塑料垃圾精确检测_1
yolo·分类·生活
lixzest9 小时前
目标检测算法应用工程师 面试高频题 + 标准答案
python·yolo·目标检测·计算机视觉
机 _ 长10 小时前
YOLO26 蒸馏改进全攻略:从理论到实战 (Response + Feature + Relation)
人工智能·深度学习·yolo·目标检测·计算机视觉