带标注信息的大块煤识别数据集下载,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%

带标注信息的大块煤识别数据集,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%

目录

标签:

数据集拆分

分辨率

增强

数据集图片

标注信息:

数据集下载:


标签:

coal

数据集拆分

训练集
705图片
验证集:
73图片
测试集
87图片

分辨率

分辨率640*640

增强

数据集图片

标注信息:

推理结果:

{

"predictions": [

{

"x": 331.5,

"y": 483,

"width": 59,

"height": 48,

"confidence": 0.824,

"class": "coal",

"class_id": 0,

"detection_id": "f069e457-b746-4808-960a-9fa8f60efaa0"

},

{

"x": 115.5,

"y": 70.5,

"width": 165,

"height": 119,

"confidence": 0.818,

"class": "coal",

"class_id": 0,

"detection_id": "5287da43-a0e0-411d-9be4-7be9cdb95383"

},

{

"x": 272.5,

"y": 36.5,

"width": 167,

"height": 73,

"confidence": 0.792,

"class": "coal",

"class_id": 0,

"detection_id": "3c0f93f5-32d8-4a3f-9636-2e32c287b0ab"

},

{

"x": 113,

"y": 269.5,

"width": 72,

"height": 65,

"confidence": 0.791,

"class": "coal",

"class_id": 0,

"detection_id": "a46dcc1d-60e5-4f6e-b471-1f79b5026d8b"

},

{

"x": 134.5,

"y": 372.5,

"width": 57,

"height": 51,

"confidence": 0.761,

"class": "coal",

"class_id": 0,

"detection_id": "25225b93-ae25-4d62-b0e5-1c72c2b790df"

},

{

"x": 449.5,

"y": 478,

"width": 89,

"height": 36,

"confidence": 0.74,

"class": "coal",

"class_id": 0,

"detection_id": "993fb1c5-8417-4e20-bf16-58e04d5f809a"

},

{

"x": 365.5,

"y": 221,

"width": 43,

"height": 28,

"confidence": 0.68,

"class": "coal",

"class_id": 0,

"detection_id": "d88d37b4-3ea2-435e-93f4-123dff8100df"

},

{

"x": 75.5,

"y": 405,

"width": 23,

"height": 28,

"confidence": 0.655,

"class": "coal",

"class_id": 0,

"detection_id": "18d1e296-f3f9-45a3-b6c1-c5ae1368e058"

},

{

"x": 450.5,

"y": 373.5,

"width": 47,

"height": 41,

"confidence": 0.653,

"class": "coal",

"class_id": 0,

"detection_id": "22c11212-9c19-41f8-a51b-14f3998c0955"

},

{

"x": 204.5,

"y": 449.5,

"width": 63,

"height": 35,

"confidence": 0.651,

"class": "coal",

"class_id": 0,

"detection_id": "f94a09c9-f8a8-4fff-bee1-5fa25531c9fa"

},

{

"x": 15.5,

"y": 420,

"width": 23,

"height": 26,

"confidence": 0.628,

"class": "coal",

"class_id": 0,

"detection_id": "8b1be669-8322-4741-a80e-02c476567fc0"

},

{

"x": 338,

"y": 288.5,

"width": 60,

"height": 37,

"confidence": 0.605,

"class": "coal",

"class_id": 0,

"detection_id": "9b5e387c-f775-4204-86dd-2e8fd3686363"

},

{

"x": 75.5,

"y": 311,

"width": 53,

"height": 46,

"confidence": 0.596,

"class": "coal",

"class_id": 0,

"detection_id": "19191e03-f6a3-4025-95a0-a29b94188fb2"

},

{

"x": 32.5,

"y": 396.5,

"width": 23,

"height": 23,

"confidence": 0.585,

"class": "coal",

"class_id": 0,

"detection_id": "2619e0df-f7f3-4f40-a90d-4e3b10abec54"

},

{

"x": 127.5,

"y": 538,

"width": 29,

"height": 38,

"confidence": 0.512,

"class": "coal",

"class_id": 0,

"detection_id": "1d5960ac-d391-4dbe-88df-c7dfa20abc50"

}

]

}

数据集下载:

yolo26:https://download.csdn.net/download/pbymw8iwm/92589733

yolo v12:https://download.csdn.net/download/pbymw8iwm/92589735

yolo v11:https://download.csdn.net/download/pbymw8iwm/92589734

yolo v9: https://download.csdn.net/download/pbymw8iwm/92589737

yolo v8:https://download.csdn.net/download/pbymw8iwm/92589732

yolo v7:https://download.csdn.net/download/pbymw8iwm/92589736

yolo v5:https://download.csdn.net/download/pbymw8iwm/92589730

coco json: https://download.csdn.net/download/pbymw8iwm/92589738

pascal voc xml: https://download.csdn.net/download/pbymw8iwm/92589739

yolo darknet:https://download.csdn.net/download/pbymw8iwm/92589731

相关推荐
学习3人组17 小时前
YOLO模型集成到Label Studio的MODEL服务
yolo
孤狼warrior17 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
水中加点糖19 小时前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
前端摸鱼匠1 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
2501_941329721 天前
改进YOLOv8-seg-act__鸡只计数检测实战
yolo
weixin_395448911 天前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo
王锋(oxwangfeng)2 天前
YOLOWorld 实现开集障碍物检测
yolo
喵叔哟2 天前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
2501_941333102 天前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
xsc-xyc2 天前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测