一维热传导方程的PINN求解------损失函数实时绘制
python
# -*- coding: utf-8 -*-
######### ---- 精简版 PINN 求解一维热传导方程 ---- #########
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import torch
import torch.nn as nn
import numpy as np
import random
from tqdm import tqdm
import matplotlib.pyplot as plt
# ======================
# 基础设置
# ======================
def setup_seed(seed=20):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
setup_seed(20)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# ======================
# PINN 网络
# ======================
class PINN(nn.Module):
def __init__(self, layers=[2, 20, 20, 20, 20, 20, 1]):
super().__init__()
net = []
for i in range(len(layers)-2):
net.append(nn.Linear(layers[i], layers[i+1]))
net.append(nn.Tanh())
net.append(nn.Linear(layers[-2], layers[-1]))
self.net = nn.Sequential(*net)
def forward(self, t, x):
return self.net(torch.cat([t, x], dim=1))
# ======================
# 封装偏导函数
# ======================
def grad(u, var):
return torch.autograd.grad(
u, var, grad_outputs=torch.ones_like(u),
create_graph=True, retain_graph=True
)[0]
# ======================
# 损失函数
# ======================
def physics_loss(model, t, x, alpha=1.0):
T = model(t, x)
T_t = grad(T, t)
T_xx = grad(grad(T, x), x)
return torch.mean((T_t - alpha * T_xx) ** 2)
def boundary_loss(model, t_bc, x_left, x_right):
T_left = model(t_bc, x_left)
T_right = model(t_bc, x_right)
loss_left = torch.mean((grad(T_left, x_left) + 1.0) ** 2)
loss_right = torch.mean((grad(T_right, x_right) - 0.0) ** 2)
return loss_left + loss_right
def initial_loss(model, x_ic):
t0 = torch.zeros_like(x_ic, device=device)
T0 = model(t0, x_ic)
return torch.mean((T0 - 0.0) ** 2)
# ======================
# 训练函数(实时绘图)
# ======================
def train(model, optimizer, num_epochs=5000):
# -------- 采样点 --------
N_f, N_bc, N_ic = 8000, 80, 100
t = torch.rand(N_f,1,device=device,requires_grad=True)
x = torch.rand(N_f,1,device=device,requires_grad=True)
t_bc = torch.rand(N_bc,1,device=device,requires_grad=True)
x_left = torch.zeros(N_bc,1,device=device,requires_grad=True)
x_right = torch.ones(N_bc,1,device=device,requires_grad=True)
x_ic = torch.rand(N_ic,1,device=device)
# -------- Loss 记录 --------
loss_f_list, loss_bc_list, loss_ic_list, loss_total_list = [], [], [], []
# -------- 实时绘图 --------
plt.ion()
fig, ax = plt.subplots(figsize=(6,4))
for epoch in tqdm(range(num_epochs), desc="Training"):
optimizer.zero_grad()
loss_f = physics_loss(model, t, x)
loss_bc = boundary_loss(model, t_bc, x_left, x_right)
loss_ic = initial_loss(model, x_ic)
loss = loss_f + loss_bc + loss_ic
loss.backward()
optimizer.step()
# 记录
loss_f_list.append(loss_f.item())
loss_bc_list.append(loss_bc.item())
loss_ic_list.append(loss_ic.item())
loss_total_list.append(loss.item())
# -------- 实时更新曲线 --------
if epoch % 50 == 0:
ax.clear()
ax.semilogy(loss_f_list, label="Physics")
ax.semilogy(loss_bc_list, label="BC")
ax.semilogy(loss_ic_list, label="IC")
ax.semilogy(loss_total_list, label="Total")
ax.set_xlabel("Epoch")
ax.set_ylabel("Loss")
ax.legend()
ax.set_title(f"Epoch {epoch}")
plt.pause(0.01)
if epoch % 500 == 0:
print(f"[{epoch}] Total={loss.item():.3e} | "
f"F={loss_f.item():.3e} | BC={loss_bc.item():.3e} | IC={loss_ic.item():.3e}")
plt.ioff()
plt.show()
return loss_f_list, loss_bc_list, loss_ic_list, loss_total_list
# ======================
# 主程序
# ======================
model = PINN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
loss_f, loss_bc, loss_ic, loss_total = train(model, optimizer, num_epochs=5000)