一维热传导方程的PINN求解——损失函数实时绘制

一维热传导方程的PINN求解------损失函数实时绘制

python 复制代码
# -*- coding: utf-8 -*-
######### ---- 精简版 PINN 求解一维热传导方程 ---- #########

import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

import torch
import torch.nn as nn
import numpy as np
import random
from tqdm import tqdm
import matplotlib.pyplot as plt

# ======================
# 基础设置
# ======================
def setup_seed(seed=20):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

setup_seed(20)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# ======================
# PINN 网络
# ======================
class PINN(nn.Module):
    def __init__(self, layers=[2, 20, 20, 20, 20, 20, 1]):
        super().__init__()
        net = []
        for i in range(len(layers)-2):
            net.append(nn.Linear(layers[i], layers[i+1]))
            net.append(nn.Tanh())
        net.append(nn.Linear(layers[-2], layers[-1]))
        self.net = nn.Sequential(*net)

    def forward(self, t, x):
        return self.net(torch.cat([t, x], dim=1))

# ======================
# 封装偏导函数
# ======================
def grad(u, var):
    return torch.autograd.grad(
        u, var, grad_outputs=torch.ones_like(u),
        create_graph=True, retain_graph=True
    )[0]

# ======================
# 损失函数
# ======================
def physics_loss(model, t, x, alpha=1.0):
    T = model(t, x)
    T_t = grad(T, t)
    T_xx = grad(grad(T, x), x)
    return torch.mean((T_t - alpha * T_xx) ** 2)

def boundary_loss(model, t_bc, x_left, x_right):
    T_left = model(t_bc, x_left)
    T_right = model(t_bc, x_right)
    loss_left = torch.mean((grad(T_left, x_left) + 1.0) ** 2)
    loss_right = torch.mean((grad(T_right, x_right) - 0.0) ** 2)
    return loss_left + loss_right

def initial_loss(model, x_ic):
    t0 = torch.zeros_like(x_ic, device=device)
    T0 = model(t0, x_ic)
    return torch.mean((T0 - 0.0) ** 2)

# ======================
# 训练函数(实时绘图)
# ======================
def train(model, optimizer, num_epochs=5000):
    # -------- 采样点 --------
    N_f, N_bc, N_ic = 8000, 80, 100

    t = torch.rand(N_f,1,device=device,requires_grad=True)
    x = torch.rand(N_f,1,device=device,requires_grad=True)

    t_bc = torch.rand(N_bc,1,device=device,requires_grad=True)
    x_left = torch.zeros(N_bc,1,device=device,requires_grad=True)
    x_right = torch.ones(N_bc,1,device=device,requires_grad=True)

    x_ic = torch.rand(N_ic,1,device=device)

    # -------- Loss 记录 --------
    loss_f_list, loss_bc_list, loss_ic_list, loss_total_list = [], [], [], []

    # -------- 实时绘图 --------
    plt.ion()
    fig, ax = plt.subplots(figsize=(6,4))

    for epoch in tqdm(range(num_epochs), desc="Training"):
        optimizer.zero_grad()
        loss_f = physics_loss(model, t, x)
        loss_bc = boundary_loss(model, t_bc, x_left, x_right)
        loss_ic = initial_loss(model, x_ic)
        loss = loss_f + loss_bc + loss_ic
        loss.backward()
        optimizer.step()

        # 记录
        loss_f_list.append(loss_f.item())
        loss_bc_list.append(loss_bc.item())
        loss_ic_list.append(loss_ic.item())
        loss_total_list.append(loss.item())

        # -------- 实时更新曲线 --------
        if epoch % 50 == 0:
            ax.clear()
            ax.semilogy(loss_f_list, label="Physics")
            ax.semilogy(loss_bc_list, label="BC")
            ax.semilogy(loss_ic_list, label="IC")
            ax.semilogy(loss_total_list, label="Total")
            ax.set_xlabel("Epoch")
            ax.set_ylabel("Loss")
            ax.legend()
            ax.set_title(f"Epoch {epoch}")
            plt.pause(0.01)

        if epoch % 500 == 0:
            print(f"[{epoch}] Total={loss.item():.3e} | "
                  f"F={loss_f.item():.3e} | BC={loss_bc.item():.3e} | IC={loss_ic.item():.3e}")

    plt.ioff()
    plt.show()
    return loss_f_list, loss_bc_list, loss_ic_list, loss_total_list

# ======================
# 主程序
# ======================
model = PINN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

loss_f, loss_bc, loss_ic, loss_total = train(model, optimizer, num_epochs=5000)
相关推荐
overmind34 分钟前
oeasy Python 115 列表弹栈用pop删除指定索引
开发语言·python
Never_Satisfied1 小时前
在c#中,使用windows自带功能将文件夹打包为ZIP
开发语言·windows·c#
hnxaoli1 小时前
win10程序(十六)通达信参数清洗器
开发语言·python·小程序·股票·炒股
电饭叔2 小时前
文本为 “ok”、前景色为白色、背景色为红色,且点击后触发 processOK 回调函数的 tkinter 按钮
开发语言·python
雷电法拉珑2 小时前
财务数据批量采集
linux·前端·python
Never_Satisfied3 小时前
在c#中,string.replace会替换所有满足条件的子字符串,如何只替换一次
开发语言·c#
shangjian0074 小时前
Python基础-With关键字
python
Demon_Hao4 小时前
JAVA快速对接三方支付通道标准模版
java·开发语言
zchxzl4 小时前
亲测2026京津冀可靠广告展会
大数据·人工智能·python