基于YOLOv8的木材表面缺陷检测系统

本项目为《基于图像处理的木材表面缺陷检测算法研究》,基于YOLOv8深度学习模型,实现从图像/视频/摄像头输入到缺陷检测、结果展示、历史记录的完整闭环。

适用于:本科生研究生课程设计、毕业设计、答辩演示、作品集展示、交流学习。项目为个人原创,禁止商用!

一、核心亮点

  • 多模态检测:支持图片、视频、摄像头三种检测方式,覆盖常见应用场景
  • 完整流程:图像输入 → YOLOv8推理 → 结果标注 → 统计展示 → 历史记录 → 数据存储
  • 8类缺陷识别:石英质、活节、髓心、树脂、死节、裂纹节、节孔、裂纹,覆盖常见木材缺陷
  • 可视化丰富:检测结果图像标注、缺陷统计图表、置信度颜色编码、HTML格式详情展示
  • 可直接演示:PyQt6图形界面,登录注册、检测操作、历史查询一键完成
  • 用户系统:登录/注册页面 + 密码加密 + 多用户数据隔离(便于答辩展示"系统化")
  • 模型管理:默认最佳模型(mAP: 0.699)+ 自定义模型选择,灵活适配不同需求

二、核心功能清单

  • 用户管理:用户注册、登录、密码SHA256加密、多用户数据隔离
  • 图片检测:支持jpg/jpeg/png/bmp格式,实时显示检测结果与统计信息
  • 视频检测:支持mp4/avi/mov/mkv格式,逐帧检测并汇总统计
  • 摄像头检测:多摄像头实时检测,实时显示检测结果
  • 结果展示:检测图像标注、缺陷统计、置信度分析、位置信息、HTML美化展示
  • 历史记录:自动保存检测记录、历史查询、统计展示、清空功能
  • 模型管理:默认模型加载、自定义模型选择、模型信息展示
  • 数据存储:JSON格式本地存储,用户数据与历史记录分离管理

三、交付内容

  • 全套源码(结构清晰,可二次开发)
  • PyQt6界面代码(登录、主窗口、各功能页面)
  • YOLOv8检测器封装
  • 数据管理模块(用户、历史记录)
  • 配置文件与工具类
  • 训练产物:最佳模型权重文件(YOLOv8n,100轮训练,mAP: 0.699)
  • 可运行演示:完整GUI应用程序 + 项目说明文档 + 依赖包列表

需要定制功能(检测类别扩展/界面优化/性能提升/文档完善/部署打包等)可按需求加,根据工作量和复杂度评估费用。

相关推荐
交通上的硅基思维2 小时前
人工智能安全:风险、机制与治理框架研究
人工智能·安全·百度
老百姓懂点AI2 小时前
[测试工程] 告别“玄学”评测:智能体来了(西南总部)基于AI agent指挥官的自动化Eval框架与AI调度官的回归测试
运维·人工智能·自动化
2501_948120152 小时前
基于量化感知训练的大语言模型压缩方法
人工智能·语言模型·自然语言处理
songyuc2 小时前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
MARS_AI_2 小时前
大模型赋能客户沟通,云蝠大模型呼叫实现问题解决全链路闭环
人工智能·自然语言处理·信息与通信·agi
名为沙丁鱼的猫7292 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
bylander2 小时前
【AI学习】几分钟了解一下Clawdbot
人工智能·智能体·智能体应用
香芋Yu2 小时前
【机器学习教程】第04章 指数族分布
人工智能·笔记·机器学习
小咖自动剪辑2 小时前
Base64与图片互转工具增强版:一键编码/解码,支持多格式
人工智能·pdf·word·媒体