MATLAB中编写不平衡磁拉力方程通常涉及电机/发电机转子偏心时的电磁力计算。
1. 基本物理方程
不平衡磁拉力的径向分量可表示为:
matlab
% UMP基本方程
function [Fx, Fy] = calculateUMP(eccentricity, theta, params)
% 输入参数:
% eccentricity: 偏心距 [m]
% theta: 转子位置角 [rad]
% params: 包含电机参数的结构体
% 电机基本参数
R = params.R; % 定子内半径 [m]
L = params.L; % 铁芯长度 [m]
mu0 = 4*pi*1e-7; % 真空磁导率
B0 = params.B0; % 额定气隙磁密幅值 [T]
p = params.poles/2; % 极对数
% 气隙函数(考虑偏心)
g0 = params.g0; % 额定气隙长度 [m]
g = g0 * (1 - eccentricity/g0 * cos(theta));
% 麦克斯韦应力法计算磁拉力
% 径向磁通密度(简化模型)
Br = B0 * (g0./g) .* cos(p*theta);
% 切向磁通密度(忽略或简化)
Bt = 0; % 简化假设
% 麦克斯韦应力张量
sigma_r = (Br.^2 - Bt.^2)/(2*mu0);
tau_rtheta = (Br.*Bt)/mu0;
% 积分得到总力(离散化积分)
phi = linspace(0, 2*pi, 360);
dphi = phi(2) - phi(1);
Fx = 0; Fy = 0;
for i = 1:length(phi)
g_local = g0 * (1 - eccentricity/g0 * cos(phi(i) - theta));
Br_local = B0 * (g0/g_local) * cos(p*phi(i));
sigma_r_local = (Br_local^2)/(2*mu0);
Fx = Fx + R*L * sigma_r_local * cos(phi(i)) * dphi;
Fy = Fy + R*L * sigma_r_local * sin(phi(i)) * dphi;
end
% 返回不平衡磁拉力分量
end
2. 完整的UMP计算类
matlab
classdef UnbalancedMagneticPull
properties
% 电机参数
R % 定子内半径 [m]
L % 铁芯长度 [m]
g0 % 额定气隙 [m]
poles % 极数
mu0 = 4*pi*1e-7
% 磁路参数
B0 % 气隙磁密基波幅值 [T]
saturation_factor = 1.1 % 饱和系数
% 计算参数
integration_points = 360 % 积分点数
end
methods
function obj = UnbalancedMagneticPull(params)
% 构造函数
if nargin > 0
obj.R = params.R;
obj.L = params.L;
obj.g0 = params.g0;
obj.poles = params.poles;
if isfield(params, 'B0')
obj.B0 = params.B0;
end
end
end
function [Fx, Fy, radial_force] = computeUMP(obj, eccentricity, theta_rotor, theta_eccentricity)
% 计算不平衡磁拉力
% eccentricity: 偏心距 [m]
% theta_rotor: 转子位置角 [rad]
% theta_eccentricity: 偏心方向角 [rad]
if eccentricity/obj.g0 > 0.5
warning('偏心率超过50%,模型可能不准确');
end
% 离散化积分
phi = linspace(0, 2*pi, obj.integration_points);
dphi = phi(2) - phi(1);
% 初始化力分量
Fx = 0; Fy = 0;
% 计算每个角度的力密度并积分
for i = 1:length(phi)
% 局部气隙长度(考虑静态偏心)
g_local = obj.localAirGap(eccentricity, phi(i), ...
theta_rotor, theta_eccentricity);
% 局部磁通密度
Br_local = obj.localFluxDensity(g_local, phi(i), theta_rotor);
% 麦克斯韦应力
sigma_r = Br_local^2 / (2*obj.mu0);
% 力密度积分
Fx = Fx + obj.R * obj.L * sigma_r * cos(phi(i)) * dphi;
Fy = Fy + obj.R * obj.L * sigma_r * sin(phi(i)) * dphi;
end
% 径向合力大小
radial_force = sqrt(Fx^2 + Fy^2);
end
function g = localAirGap(obj, eccentricity, phi, theta_rotor, theta_eccentricity)
% 计算局部气隙长度
% 考虑静态偏心
g = obj.g0 - eccentricity * cos(phi - theta_eccentricity);
% 可选:添加动态偏心分量
% g = obj.g0 - eccentricity * cos(phi - theta_rotor - theta_eccentricity);
% 防止负气隙
g = max(g, obj.g0 * 0.01);
end
function Br = localFluxDensity(obj, g_local, phi, theta_rotor)
% 计算局部径向磁通密度
% 简化模型:假设正弦分布
% 极对数
p = obj.poles / 2;
% 气隙磁导
lambda = 1/g_local;
% MMF(磁动势)分布
F = obj.B0 * obj.g0 * sqrt(2*obj.mu0); % 换算为MMF幅值
% 基波磁通密度
Br_base = F * lambda .* cos(p*(phi - theta_rotor));
% 考虑饱和(简化)
Br = Br_base / obj.saturation_factor;
end
function [Fx_series, Fy_series] = timeAnalysis(obj, eccentricity, ...
time_vector, rotor_speed, theta_eccentricity)
% 时域分析
% rotor_speed: 转子转速 [rad/s]
Fx_series = zeros(size(time_vector));
Fy_series = zeros(size(time_vector));
for i = 1:length(time_vector)
theta_rotor = rotor_speed * time_vector(i);
[Fx, Fy] = obj.computeUMP(eccentricity, theta_rotor, theta_eccentricity);
Fx_series(i) = Fx;
Fy_series(i) = Fy;
end
end
function plotForceDistribution(obj, eccentricity, theta_rotor, theta_eccentricity)
% 绘制力分布
phi = linspace(0, 2*pi, obj.integration_points);
force_density = zeros(size(phi));
for i = 1:length(phi)
g_local = obj.localAirGap(eccentricity, phi(i), ...
theta_rotor, theta_eccentricity);
Br_local = obj.localFluxDensity(g_local, phi(i), theta_rotor);
force_density(i) = Br_local^2 / (2*obj.mu0);
end
figure;
polarplot(phi, force_density);
title('磁拉力分布');
rlim([0 max(force_density)*1.1]);
end
end
end
3. 使用示例
matlab
% 1. 定义电机参数
motor_params.R = 0.1; % 定子内半径 0.1m
motor_params.L = 0.2; % 铁芯长度 0.2m
motor_params.g0 = 0.002; % 额定气隙 2mm
motor_params.poles = 4; % 4极电机
motor_params.B0 = 0.8; % 气隙磁密 0.8T
% 2. 创建UMP对象
ump = UnbalancedMagneticPull(motor_params);
% 3. 计算特定位置的UMP
eccentricity = 0.5e-3; % 偏心0.5mm
theta_rotor = pi/6; % 转子位置角30度
theta_eccentricity = 0; % 偏心方向在0度方向
[Fx, Fy, Fr] = ump.computeUMP(eccentricity, theta_rotor, theta_eccentricity);
fprintf('UMP计算结果:\n');
fprintf('Fx = %.2f N\n', Fx);
fprintf('Fy = %.2f N\n', Fy);
fprintf('径向合力 = %.2f N\n', Fr);
% 4. 时域分析
time = 0:0.001:0.1; % 0到0.1秒
rotor_speed = 2*pi*50; % 50Hz转速
[Fx_t, Fy_t] = ump.timeAnalysis(eccentricity, time, rotor_speed, theta_eccentricity);
% 5. 绘制结果
figure;
subplot(2,1,1);
plot(time, Fx_t, 'b', 'LineWidth', 1.5);
hold on;
plot(time, Fy_t, 'r', 'LineWidth', 1.5);
xlabel('时间 [s]');
ylabel('不平衡磁拉力 [N]');
legend('Fx', 'Fy');
title('UMP时域波形');
grid on;
subplot(2,1,2);
plot(Fx_t, Fy_t);
xlabel('Fx [N]');
ylabel('Fy [N]');
title('UMP力轨迹');
axis equal;
grid on;
% 6. 绘制力分布
ump.plotForceDistribution(eccentricity, theta_rotor, theta_eccentricity);
4. 高级模型(考虑谐波)
matlab
function [Fx, Fy] = advancedUMP(eccentricity, params, harmonics)
% 考虑谐波分量的UMP计算
% 参数
R = params.R;
L = params.L;
g0 = params.g0;
p = params.poles/2;
mu0 = 4*pi*1e-7;
% 谐波次数和幅值
if nargin < 3
harmonics = struct('order', [1, 3, 5], 'amplitude', [1, 0.1, 0.05]);
end
% 计算UMP(考虑多个谐波)
phi = linspace(0, 2*pi, 720);
dphi = phi(2) - phi(1);
Fx = 0; Fy = 0;
for i = 1:length(phi)
% 气隙函数
g = g0 * (1 - eccentricity/g0 * cos(phi(i)));
% 包含谐波的磁通密度
Br = 0;
for h = 1:length(harmonics.order)
order = harmonics.order(h);
amp = harmonics.amplitude(h);
Br = Br + amp * cos(order * p * phi(i)) * (g0/g);
end
% 应力计算
sigma = Br^2 / (2*mu0);
% 积分
Fx = Fx + R * L * sigma * cos(phi(i)) * dphi;
Fy = Fy + R * L * sigma * sin(phi(i)) * dphi;
end
end
参考代码 matlab编写的不平衡磁拉力方程 www.youwenfan.com/contentcsq/82421.html
框架提供了:
- 基本物理模型:基于麦克斯韦应力张量法
- 参数化设计:易于修改电机参数
- 时域分析:可观察UMP随时间变化
- 可视化工具:力分布和轨迹图
注意事项:
- 实际应用需考虑磁饱和、槽效应、涡流等因素
- 对于大偏心情况,模型需进一步修正
- 建议结合有限元分析进行验证