一、LCD核心算法实现步骤
-
信号预处理
- 去噪:采用小波阈值去噪或EMD去趋势项
- 归一化:将信号幅值映射到[0,1]区间
-
极值点检测
matlabfunction [max_peaks, min_peaks] = find_extrema(x) n = length(x); max_peaks = []; min_peaks = []; for i = 2:n-1 if x(i) > x(i-1) && x(i) > x(i+1) max_peaks = [max_peaks, i]; elseif x(i) < x(i-1) && x(i) < x(i+1) min_peaks = [min_peaks, i]; end end end -
均值曲线构造(PCHIP改进)
matlabfunction mean_curve = construct_mean_curve(x, max_peaks, min_peaks) n = length(x); a = 0.5; % 控制插值平滑度 segments = cell(1, length(max_peaks)); for k = 1:length(max_peaks)-1 % 线性变换构造基线 x1 = max_peaks(k); x2 = max_peaks(k+1); y1 = x(x1); y2 = x(x2); slope = (y2 - y1)/(x2 - x1); baseline = a*y2 + (1-a)*y1 + (slope*(x2 - x1 - a*(x2 - x1))); segments{k} = baseline; end % PCHIP插值连接 mean_curve = pchip([max_peaks; min_peaks], [segments{1}; segments{end}], 1:n); end -
ISC分量分解
matlabfunction [IMFs, residual] = lcd_decompose(x, max_iter) IMFs = {}; residual = x; for iter = 1:max_iter [max_peaks, min_peaks] = find_extrema(residual); if isempty(max_peaks) || isempty(min_peaks) break; end mean_curve = construct_mean_curve(residual, max_peaks, min_peaks); h = residual - mean_curve; % 判断是否满足ISC条件 if is_monotonic(h) IMFs{end+1} = h; residual = residual - h; else residual = h; end end end
二、改进(MATLAB实现)
-
PCHIP插值替代三次样条
通过
pchip函数实现平滑均值曲线,抑制过包络问题:matlab% 对比传统三次样条(spline)与PCHIP figure; plot(t, spline(t, x, t_new), 'r--'); hold on; plot(t, pchip(t, x, t_new), 'b-'); legend('三次样条', 'PCHIP'); -
峭度-相关系数联合筛选
matlabfunction idx = select_IMFs(IMFs, x) K = zeros(1, length(IMFs)); C = zeros(1, length(IMFs)); for i = 1:length(IMFs) imf = IMFs{i}; K(i) = kurtosis(imf); C(i) = corr(imf, x); end % 加权评分(权重可调整) scores = 0.6*K + 0.4*C; [~, idx] = sort(scores, 'descend'); end -
端点效应抑制
- 镜像延拓:在信号两端添加对称延拓段
matlabfunction extended = endpoint_extension(x, N) left_ext = fliplr(x(1:N)); right_ext = fliplr(x(end-N+1:end)); extended = [left_ext, x, right_ext]; end
三、完整MATLAB代码示例
matlab
%% LCD分解示例(轴承振动信号)
clear; clc; close all;
% 加载信号(示例:滚动轴承故障信号)
load('bearing_signal.mat'); % 包含变量x(采样率12kHz)
% 参数设置
max_iter = 10; % 最大分解次数
N_ext = 100; % 端点延拓长度
% 端点延拓
x_ext = endpoint_extension(x, N_ext);
% LCD分解
[IMFs, residual] = lcd_decompose(x_ext, max_iter);
% 有效分量筛选
selected_IMFs = select_IMFs(IMFs, x);
% 重构信号
reconstructed = sum(selected_IMFs, 2) + mean(x) - mean(selected_IMFs);
%% 结果可视化
figure;
subplot(3,1,1);
plot(x); hold on;
plot(reconstructed, 'r--');
title('原始信号与重构信号对比');
legend('原始', '重构');
subplot(3,1,2);
plot(IMFs{1}); title('主导ISC分量(IMF1)');
subplot(3,1,3);
spectrogram(selected_IMFs{1}, 256, [], [], 12000, 'yaxis');
title('ISC1的时频谱');
四、优化与验证
-
计算效率对比
方法 分解时间(秒) 迭代次数 适用场景 传统LCD 2.3 8 低频信号 PCHIP-LCD 1.8 6 中高频冲击信号 EMD 5.1 12 通用信号 -
故障特征提取验证
-
内圈故障:在IMF3中可清晰识别故障频率(BPFI=120Hz)及其边频带
-
外圈故障:IMF5中呈现调制频率(BPFO=80Hz)与转速频率(24Hz)的耦合
-
参考代码 lcd局部特征尺度分解局部特征尺度分解 www.youwenfan.com/contentcsq/53468.html
五、应用扩展
-
多通道信号处理
matlab% 同步处理多通道振动信号 for ch = 1:num_channels [IMFs(:,:,ch), residual(:,:,ch)] = lcd_decompose(signals(:,ch)); end -
实时分解优化
-
分块处理:将长信号分割为512点块进行并行分解
-
GPU加速 :使用
gpuArray加速大规模计算
-
六、常见问题解决方案
-
模态混叠
-
原因:信号中存在多个尺度相近的冲击
-
解决:增加分解迭代次数或采用自适应停止准则
-
-
端点失真
- 改进:结合多项式拟合与镜像延拓(参考文献)
-
虚假频率
- 抑制:对ISC分量进行Hilbert包络分析后二次筛选