引言
随着自然语言处理(NLP)、计算机视觉和多模态大模型的飞速发展,Transformer架构已经成为现代AI模型的核心支柱。从GPT、BERT到ViT、CLIP,这些大模型都依赖于自注意力机制、前馈神经网络等关键算子。ops-transformer作为CANN生态系统中专门针对Transformer类模型优化的算子库,为这些大模型在异构计算平台上的高效运行提供了坚实的基础支撑。
本文将深入解析ops-transformer算子库的设计理念、核心实现和应用实践,帮助开发者更好地理解和使用这一重要的加速工具。
一、ops-transformer算子库概述
1.1 设计目标
ops-transformer算子库专注于解决Transformer模型推理和训练中的性能瓶颈,主要设计目标包括:
- 极致性能:充分利用硬件并行计算能力,优化内存访问模式
- 灵活适配:支持多种Transformer变体和尺寸配置
- 精度保障:提供FP32、FP16、BF16等多种精度支持
- 内存高效:通过算子融合和内存复用降低显存占用
1.2 核心算子分类
ops-transformer包含以下主要算子类别:
| 算子类别 | 核心功能 | 典型应用 |
|---|---|---|
| 注意力算子 | Self-Attention、Cross-Attention | GPT、BERT、ViT |
| 位置编码 | Rotary Embedding、ALiBi | LLaMA、BLOOM |
| 层归一化 | RMSNorm、LayerNorm | 各类Transformer |
| 激活函数 | GELU、SwiGLU、GeGLU | 现代大模型 |
| 前馈网络 | FFN、MoE gating | 混合专家模型 |
| 掩码操作 | Causal Mask、Padding Mask | 自回归生成 |
二、核心算子详解
2.1 多头自注意力算子
自注意力机制是Transformer的核心,其计算流程包括:QKV投影、注意力分数计算、Softmax归一化和值聚合。
2.1.1 标准Self-Attention实现
cpp
#include "ops_transformer.h"
#include "tensor.h"
namespace ops_transformer {
template<typename T>
class MultiHeadAttention {
public:
struct Config {
int hidden_size;
int num_heads;
int head_dim;
float dropout_prob;
bool use_causal_mask;
};
MultiHeadAttention(const Config& config)
: config_(config) {
// 初始化权重矩阵
int weight_size = config.hidden_size * config.head_dim * config.num_heads;
q_weight_ = std::make_shared<Tensor<T>>({config.hidden_size, weight_size});
k_weight_ = std::make_shared<Tensor<T>>({config.hidden_size, weight_size});
v_weight_ = std::make_shared<Tensor<T>>({config.hidden_size, weight_size});
o_weight_ = std::make_shared<Tensor<T>>({weight_size, config.hidden_size});
}
// 前向计算
Tensor<T> forward(const Tensor<T>& input,
const Tensor<T>& attention_mask = Tensor<T>()) {
int batch_size = input.shape(0);
int seq_len = input.shape(1);
// 1. QKV投影 [batch, seq, hidden] -> [batch, num_heads, seq, head_dim]
auto q = project_to_qkv(input, q_weight_);
auto k = project_to_qkv(input, k_weight_);
auto v = project_to_qkv(input, v_weight_);
// 2. 计算注意力分数
auto attn_scores = compute_attention_scores(q, k);
// 3. 应用因果掩码(如果需要)
if (config_.use_causal_mask) {
apply_causal_mask(attn_scores, seq_len);
}
// 4. 应用外部掩码
if (attention_mask.valid()) {
attn_scores = attn_scores + attention_mask;
}
// 5. Softmax归一化
auto attn_probs = softmax(attn_scores, /*dim=*/-1);
// 6. 值聚合
auto context = apply_attention(attn_probs, v);
// 7. 输出投影
auto output = project_output(context, o_weight_);
return output;
}
private:
Config config_;
std::shared_ptr<Tensor<T>> q_weight_, k_weight_, v_weight_, o_weight_;
// QKV投影算子
Tensor<T> project_to_qkv(const Tensor<T>& input,
const std::shared_ptr<Tensor<T>>& weight) {
// [batch, seq, hidden] @ [hidden, num_heads * head_dim]
// -> [batch, seq, num_heads * head_dim]
auto projected = matmul(input, *weight);
// 重排为 [batch, num_heads, seq, head_dim]
int batch = input.shape(0);
int seq = input.shape(1);
int num_heads = config_.num_heads;
int head_dim = config_.head_dim;
return reshape(projected, {batch, num_heads, seq, head_dim});
}
// 计算注意力分数: Q @ K^T / sqrt(d_k)
Tensor<T> compute_attention_scores(const Tensor<T>& q, const Tensor<T>& k) {
// q: [batch, num_heads, seq_q, head_dim]
// k: [batch, num_heads, seq_k, head_dim]
// result: [batch, num_heads, seq_q, seq_k]
auto k_transposed = transpose(k, {0, 1, 3, 2}); // 交换最后两维
auto scores = matmul(q, k_transposed);
// 缩放因子
float scale = 1.0f / std::sqrt(static_cast<float>(config_.head_dim));
return scalar_multiply(scores, scale);
}
// 应用因果掩码(下三角矩阵)
void apply_causal_mask(Tensor<T>& scores, int seq_len) {
for (int i = 0; i < seq_len; ++i) {
for (int j = i + 1; j < seq_len; ++j) {
scores.set_value(std::numeric_limits<T>::lowest(), i, j);
}
}
}
// Softmax归一化
Tensor<T> softmax(const Tensor<T>& x, int dim) {
auto exp_x = exp(x);
auto sum_exp = sum(exp_x, dim, /*keepdim=*/true);
return exp_x / sum_exp;
}
// 应用注意力权重到值
Tensor<T> apply_attention(const Tensor<T>& attn_probs, const Tensor<T>& v) {
// attn_probs: [batch, num_heads, seq_q, seq_k]
// v: [batch, num_heads, seq_k, head_dim]
return matmul(attn_probs, v);
}
// 输出投影
Tensor<T> project_output(const Tensor<T>& context,
const std::shared_ptr<Tensor<T>>& weight) {
// [batch, num_heads, seq, head_dim] -> [batch, seq, num_heads * head_dim]
int batch = context.shape(0);
int num_heads = context.shape(1);
int seq = context.shape(2);
int head_dim = context.shape(3);
auto reshaped = reshape(context, {batch, seq, num_heads * head_dim});
// [batch, seq, hidden] = [batch, seq, num_heads * head_dim] @ [num_heads * head_dim, hidden]
return matmul(reshaped, *weight);
}
};
} // namespace ops_transformer
2.1.2 Flash Attention优化实现
Flash Attention通过分块计算和内存优化大幅提升了注意力计算效率:
cpp
template<typename T>
class FlashAttention {
public:
// 分块大小(需根据硬件缓存调整)
static constexpr int BLOCK_SIZE_M = 64; // 查询块大小
static constexpr int BLOCK_SIZE_N = 64; // 键块大小
static constexpr int BLOCK_SIZE_B = 64; // 批大小块
Tensor<T> forward(const Tensor<T>& q, const Tensor<T>& k, const Tensor<T>& v) {
// 输入形状: [batch, num_heads, seq_len, head_dim]
int batch = q.shape(0);
int num_heads = q.shape(1);
int seq_len = q.shape(2);
int head_dim = q.shape(3);
// 输出初始化
Tensor<T> output({batch, num_heads, seq_len, head_dim});
Tensor<T> running_sum({batch, num_heads, seq_len, 1});
Tensor<T> running_max({batch, num_heads, seq_len, 1});
// 初始化
running_sum.fill(0.0f);
running_max.fill(-std::numeric_limits<T>::infinity());
output.fill(0.0f);
// 分块遍历
for (int start_n = 0; start_n < seq_len; start_n += BLOCK_SIZE_N) {
int end_n = std::min(start_n + BLOCK_SIZE_N, seq_len);
// 加载当前K、V块
auto k_block = get_block(k, start_n, end_n);
auto v_block = get_block(v, start_n, end_n);
// 计算Q与当前K块的分值
auto q_block = get_full_q(q);
auto scores = matmul(q_block, transpose(k_block, {0, 1, 3, 2}));
scores = scores * (1.0f / std::sqrt(static_cast<float>(head_dim)));
// 更新running max和sum
auto new_max = maximum(running_max, reduce_max(scores, /*dim=*/-1, /*keepdim=*/true));
auto scores_exp = exp(scores - new_max);
auto new_sum = running_sum * exp(running_max - new_max) + sum(scores_exp, /*dim=*/-1, /*keepdim=*/true);
// 更新输出
output = output * (running_sum / new_sum * exp(running_max - new_max));
output = output + matmul(scores_exp, v_block) / new_sum;
// 更新running统计量
running_max = new_max;
running_sum = new_sum;
}
return output;
}
private:
Tensor<T> get_block(const Tensor<T>& tensor, int start, int end) {
// 提取tensor的指定块
return tensor.slice(/*dim=*/2, start, end);
}
Tensor<T> get_full_q(const Tensor<T>& q) {
return q; // Flash Attention中Q通常分块较小
}
};
2.2 旋转位置编码(RoPE)
旋转位置编码(Rotary Position Embedding)通过旋转矩阵将位置信息注入到Query和Key中:
cpp
template<typename T>
class RotaryPositionEmbedding {
public:
struct Config {
int dim;
int max_position_embeddings;
float base;
};
RotaryPositionEmbedding(const Config& config)
: config_(config) {
precompute_freqs();
}
// 应用旋转位置编码
void apply_rotary_pos_emb(Tensor<T>& q, Tensor<T>& k,
int start_pos = 0) const {
int batch = q.shape(0);
int num_heads = q.shape(1);
int seq_len = q.shape(2);
int head_dim = q.shape(3);
// 确保head_dim是偶数
assert(head_dim % 2 == 0);
// 重排为复数形式: [batch, num_heads, seq_len, head_dim/2, 2]
auto q_complex = reshape_to_complex(q);
auto k_complex = reshape_to_complex(k);
// 获取对应位置的频率
auto freqs = get_freqs(start_pos, start_pos + seq_len);
// 应用旋转: (a + bi) * (cos + i*sin) = (a*cos - b*sin) + i(a*sin + b*cos)
apply_rotation(q_complex, freqs);
apply_rotation(k_complex, freqs);
// 重排回原形状
q = reshape_from_complex(q_complex, q.shape());
k = reshape_from_complex(k_complex, k.shape());
}
private:
Config config_;
Tensor<float> freqs_; // 预计算的频率 [max_pos, dim/2]
void precompute_freqs() {
// 计算频率: theta_i = base^(-2i/d)
int half_dim = config_.dim / 2;
freqs_ = Tensor<float>({config_.max_position_embeddings, half_dim});
for (int pos = 0; pos < config_.max_position_embeddings; ++pos) {
for (int i = 0; i < half_dim; ++i) {
float theta = std::pow(config_.base, -2.0f * i / config_.dim);
freqs_.set_value(pos * theta, pos, i);
}
}
}
Tensor<T> get_freqs(int start, int end) const {
// 获取指定位置的频率,并转换为cos/sin对
auto freqs_slice = freqs_.slice(/*dim=*/0, start, end);
int seq_len = end - start;
int half_dim = config_.dim / 2;
Tensor<T> result({seq_len, half_dim, 2});
for (int pos = 0; pos < seq_len; ++pos) {
for (int i = 0; i < half_dim; ++i) {
float freq = freqs_slice.get_value(pos, i);
result.set_value(std::cos(freq), pos, i, 0); // cos
result.set_value(std::sin(freq), pos, i, 1); // sin
}
}
return result;
}
Tensor<T> reshape_to_complex(const Tensor<T>& x) const {
// [batch, num_heads, seq_len, head_dim]
// -> [batch, num_heads, seq_len, head_dim/2, 2]
auto shape = x.shape();
shape.back() = shape.back() / 2;
shape.push_back(2);
return reshape(x, shape);
}
Tensor<T> reshape_from_complex(const Tensor<T>& x_complex,
const std::vector<int>& target_shape) const {
return reshape(x_complex, target_shape);
}
void apply_rotation(Tensor<T>& x_complex, const Tensor<T>& freqs) const {
// x_complex: [batch, num_heads, seq_len, dim/2, 2]
// freqs: [seq_len, dim/2, 2]
int batch = x_complex.shape(0);
int num_heads = x_complex.shape(1);
int seq_len = x_complex.shape(2);
int half_dim = x_complex.shape(3);
for (int b = 0; b < batch; ++b) {
for (int h = 0; h < num_heads; ++h) {
for (int pos = 0; pos < seq_len; ++pos) {
for (int i = 0; i < half_dim; ++i) {
T a = x_complex.get_value(b, h, pos, i, 0);
T b_val = x_complex.get_value(b, h, pos, i, 1);
T cos_val = freqs.get_value(pos, i, 0);
T sin_val = freqs.get_value(pos, i, 1);
// 复数乘法
x_complex.set_value(a * cos_val - b_val * sin_val, b, h, pos, i, 0);
x_complex.set_value(a * sin_val + b_val * cos_val, b, h, pos, i, 1);
}
}
}
}
}
};
2.3 RMS归一化
RMSNorm是现代大模型(如LLaMA)常用的归一化方法:
cpp
template<typename T>
class RMSNorm {
public:
struct Config {
int hidden_size;
float epsilon;
bool use_bias;
};
RMSNorm(const Config& config)
: config_(config),
weight_(Tensor<T>({config.hidden_size})),
bias_(Tensor<T>({config.hidden_size})) {
weight_.fill(1.0f);
if (config_.use_bias) {
bias_.fill(0.0f);
}
}
Tensor<T> forward(const Tensor<T>& input) const {
// input: [batch, seq_len, hidden_size]
int batch = input.shape(0);
int seq_len = input.shape(1);
int hidden = input.shape(2);
Tensor<T> output(input.shape());
// 对每个位置独立归一化
for (int b = 0; b < batch; ++b) {
for (int s = 0; s < seq_len; ++s) {
// 计算均方根: sqrt(sum(x^2) / dim + epsilon)
float sum_sq = 0.0f;
for (int h = 0; h < hidden; ++h) {
T val = input.get_value(b, s, h);
sum_sq += val * val;
}
float rms = std::sqrt(sum_sq / hidden + config_.epsilon);
// 归一化并应用权重
for (int h = 0; h < hidden; ++h) {
T val = input.get_value(b, s, h);
T w = weight_.get_value(h);
T output_val = (val / rms) * w;
if (config_.use_bias) {
output_val += bias_.get_value(h);
}
output.set_value(output_val, b, s, h);
}
}
}
return output;
}
private:
Config config_;
Tensor<T> weight_;
Tensor<T> bias_;
};
2.4 SwiGLU激活函数
SwiGLU是PaLM、LLaMA等大模型使用的激活函数:
cpp
template<typename T>
class SwiGLU {
public:
// SwiGLU(x) = Swish(xW) ⊙ (xV)
// 其中 Swish(x) = x * sigmoid(x)
// ⊙ 表示逐元素乘法
static Tensor<T> forward(const Tensor<T>& input,
const Tensor<T>& gate_weight,
const Tensor<T>& up_weight) {
// input: [batch, seq_len, hidden_size]
// gate_weight: [hidden_size, intermediate_size]
// up_weight: [hidden_size, intermediate_size]
// 门控分支: xW
auto gate = matmul(input, gate_weight);
// 上行分支: xV
auto up = matmul(input, up_weight);
// Swish激活: gate * sigmoid(gate)
auto gate_swish = swish(gate);
// 逐元素乘法
return elementwise_multiply(gate_swish, up);
}
static Tensor<T> swish(const Tensor<T>& x) {
Tensor<T> result(x.shape());
for (size_t i = 0; i < x.size(); ++i) {
T val = x.data()[i];
T sigmoid_val = 1.0f / (1.0f + std::exp(-val));
result.data()[i] = val * sigmoid_val;
}
return result;
}
private:
static Tensor<T> elementwise_multiply(const Tensor<T>& a, const Tensor<T>& b) {
assert(a.shape() == b.shape());
Tensor<T> result(a.shape());
for (size_t i = 0; i < a.size(); ++i) {
result.data()[i] = a.data()[i] * b.data()[i];
}
return result;
}
};
2.5 分组查询注意力(GQA)
分组查询注意力是Multi-Query Attention和Multi-Head Attention的折中方案:
cpp
template<typename T>
class GroupedQueryAttention {
public:
struct Config {
int hidden_size;
int num_heads; // 查询头数
int num_kv_heads; // 键值头数(分组数)
int head_dim;
bool use_causal_mask;
};
GroupedQueryAttention(const Config& config)
: config_(config) {
assert(config.num_heads % config.num_kv_heads == 0);
qkv_ratio_ = config.num_heads / config.num_kv_heads;
// 初始化权重
q_weight_ = Tensor<T>({config.hidden_size,
config.num_heads * config.head_dim});
k_weight_ = Tensor<T>({config.hidden_size,
config.num_kv_heads * config.head_dim});
v_weight_ = Tensor<T>({config.hidden_size,
config.num_kv_heads * config.head_dim});
o_weight_ = Tensor<T>({config.num_heads * config.head_dim,
config.hidden_size});
}
Tensor<T> forward(const Tensor<T>& input,
const Tensor<T>& attention_mask = Tensor<T>()) {
int batch_size = input.shape(0);
int seq_len = input.shape(1);
// 1. 投影QKV
auto q = project_q(input); // [batch, num_heads, seq, head_dim]
auto k = project_kv(input); // [batch, num_kv_heads, seq, head_dim]
auto v = project_kv(input); // [batch, num_kv_heads, seq, head_dim]
// 2. 扩展KV以匹配Q头数
k = expand_kv_heads(k);
v = expand_kv_heads(v);
// 3. 标准注意力计算
auto attn_scores = compute_attention_scores(q, k);
if (config_.use_causal_mask) {
apply_causal_mask(attn_scores, seq_len);
}
if (attention_mask.valid()) {
attn_scores = attn_scores + attention_mask;
}
auto attn_probs = softmax(attn_scores, /*dim=*/-1);
auto context = matmul(attn_probs, v);
// 4. 输出投影
return project_output(context);
}
private:
Config config_;
int qkv_ratio_;
Tensor<T> q_weight_, k_weight_, v_weight_, o_weight_;
Tensor<T> project_q(const Tensor<T>& input) {
auto projected = matmul(input, q_weight_);
return reshape(projected, {input.shape(0), config_.num_heads,
input.shape(1), config_.head_dim});
}
Tensor<T> project_kv(const Tensor<T>& input) {
auto projected = matmul(input, k_weight_);
return reshape(projected, {input.shape(0), config_.num_kv_heads,
input.shape(1), config_.head_dim});
}
Tensor<T> expand_kv_heads(const Tensor<T>& kv) {
// kv: [batch, num_kv_heads, seq, head_dim]
// 扩展为: [batch, num_heads, seq, head_dim]
int batch = kv.shape(0);
int seq = kv.shape(2);
int head_dim = kv.shape(3);
Tensor<T> expanded({batch, config_.num_heads, seq, head_dim});
for (int b = 0; b < batch; ++b) {
for (int h = 0; h < config_.num_heads; ++h) {
int kv_head = h / qkv_ratio_; // 计算对应的KV头
for (int s = 0; s < seq; ++s) {
for (int d = 0; d < head_dim; ++d) {
expanded.set_value(kv.get_value(b, kv_head, s, d),
b, h, s, d);
}
}
}
}
return expanded;
}
Tensor<T> compute_attention_scores(const Tensor<T>& q, const Tensor<T>& k) {
auto k_t = transpose(k, {0, 1, 3, 2});
auto scores = matmul(q, k_t);
float scale = 1.0f / std::sqrt(static_cast<float>(config_.head_dim));
return scalar_multiply(scores, scale);
}
void apply_causal_mask(Tensor<T>& scores, int seq_len) {
for (int i = 0; i < seq_len; ++i) {
for (int j = i + 1; j < seq_len; ++j) {
scores.set_value(std::numeric_limits<T>::lowest(), i, j);
}
}
}
Tensor<T> project_output(const Tensor<T>& context) {
int batch = context.shape(0);
int seq = context.shape(2);
auto reshaped = reshape(context, {batch, seq,
config_.num_heads * config_.head_dim});
return matmul(reshaped, o_weight_);
}
};
三、完整Transformer层实现
以下是一个完整的Transformer解码器层的实现示例:
cpp
template<typename T>
class TransformerDecoderLayer {
public:
struct Config {
int hidden_size;
int num_heads;
int num_kv_heads; // 0表示使用标准MHA
int intermediate_size;
float epsilon;
float dropout_prob;
bool use_rms_norm;
bool use_swiglu;
bool use_rope;
int rope_dim;
bool use_gqa;
};
TransformerDecoderLayer(const Config& config)
: config_(config) {
// 初始化自注意力
if (config.use_gqa && config.num_kv_heads > 0) {
typename GroupedQueryAttention<T>::Config attn_config{
config.hidden_size,
config.num_heads,
config.num_kv_heads,
config.head_dim(),
true // causal mask
};
self_attn_ = std::make_unique<GroupedQueryAttention<T>>(attn_config);
} else {
typename MultiHeadAttention<T>::Config attn_config{
config.hidden_size,
config.num_heads,
config.head_dim(),
config.dropout_prob,
true // causal mask
};
self_attn_ = std::make_unique<MultiHeadAttention<T>>(attn_config);
}
// 初始化RoPE
if (config.use_rope) {
typename RotaryPositionEmbedding<T>::Config rope_config{
config.rope_dim,
8192, // max_position
10000.0f // base
};
rope_ = std::make_unique<RotaryPositionEmbedding<T>>(rope_config);
}
// 初始化归一化层
typename RMSNorm<T>::Config norm_config{
config.hidden_size,
config.epsilon,
false // no bias
};
input_norm_ = std::make_unique<RMSNorm<T>>(norm_config);
post_norm_ = std::make_unique<RMSNorm<T>>(norm_config);
// 初始化FFN
ffn_weights_.gate = Tensor<T>({config.hidden_size, config.intermediate_size});
ffn_weights_.up = Tensor<T>({config.hidden_size, config.intermediate_size});
ffn_weights_.down = Tensor<T>({config.intermediate_size, config.hidden_size});
}
Tensor<T> forward(const Tensor<T>& input,
int start_pos = 0,
const Tensor<T>& attention_mask = Tensor<T>()) {
// 1. 自注意力子层(Pre-Norm)
auto residual = input;
auto normalized = input_norm_->forward(input);
// 应用RoPE(如果使用)
if (config_.use_rope && rope_) {
// 这里需要先投影出QKV,然后对QK应用RoPE
// 简化起见,假设self_attn内部处理RoPE
}
auto attn_output = self_attn_->forward(normalized, attention_mask);
auto hidden = residual + attn_output;
// 2. 前馈网络子层(Pre-Norm)
residual = hidden;
normalized = post_norm_->forward(hidden);
auto ffn_output = ffn_forward(normalized);
hidden = residual + ffn_output;
return hidden;
}
private:
Config config_;
// 自注意力
std::unique_ptr<BaseAttention<T>> self_attn_;
// 位置编码
std::unique_ptr<RotaryPositionEmbedding<T>> rope_;
// 归一化层
std::unique_ptr<RMSNorm<T>> input_norm_;
std::unique_ptr<RMSNorm<T>> post_norm_;
// FFN权重
struct FFNWeights {
Tensor<T> gate;
Tensor<T> up;
Tensor<T> down;
} ffn_weights_;
// 前馈网络前向计算
Tensor<T> ffn_forward(const Tensor<T>& input) {
if (config_.use_swiglu) {
// SwiGLU变体
auto gate_output = matmul(input, ffn_weights_.gate);
auto up_output = matmul(input, ffn_weights_.up);
auto activated = swiglu(gate_output, up_output);
return matmul(activated, ffn_weights_.down);
} else {
// 标准FFN
auto intermediate = matmul(input, ffn_weights_.gate);
auto activated = gelu(intermediate);
return matmul(activated, ffn_weights_.down);
}
}
// SwiGLU激活
Tensor<T> swiglu(const Tensor<T>& gate, const Tensor<T>& up) {
Tensor<T> result(gate.shape());
for (size_t i = 0; i < gate.size(); ++i) {
float gate_val = gate.data()[i];
float up_val = up.data()[i];
float swish = gate_val / (1.0f + std::exp(-gate_val));
result.data()[i] = swish * up_val;
}
return result;
}
// GELU激活
Tensor<T> gelu(const Tensor<T>& x) {
Tensor<T> result(x.shape());
for (size_t i = 0; i < x.size(); ++i) {
float val = x.data()[i];
// GELU近似: x * (1 + tanh(sqrt(2/pi) * (x + 0.044715 * x^3)))
float tanh_arg = 0.7978845608f * (val + 0.044715f * val * val * val);
result.data()[i] = val * (1.0f + std::tanh(tanh_arg)) / 2.0f;
}
return result;
}
};
// 抽象注意力基类
template<typename T>
class BaseAttention {
public:
virtual ~BaseAttention() = default;
virtual Tensor<T> forward(const Tensor<T>& input,
const Tensor<T>& mask = Tensor<T>()) = 0;
};
四、Python调用接口
ops-transformer提供了友好的Python接口:
python
import ops_transformer
import torch
# ===== 多头自注意力 =====
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_size, num_heads, dropout=0.0):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
# 调用ops-transformer的优化算子
self.attn_op = ops_transformer.MultiHeadAttentionOp(
hidden_size=hidden_size,
num_heads=num_heads,
dropout_prob=dropout
)
def forward(self, x, attention_mask=None):
# x: [batch, seq_len, hidden_size]
return self.attn_op.forward(x, attention_mask)
# ===== Flash Attention =====
class FlashAttentionLayer(nn.Module):
def __init__(self, hidden_size, num_heads):
super().__init__()
self.flash_attn = ops_transformer.FlashAttentionOp(
hidden_size=hidden_size,
num_heads=num_heads
)
def forward(self, q, k, v):
# 输入需要已经是投影后的QKV
# q, k, v: [batch, num_heads, seq_len, head_dim]
return self.flash_attn.forward(q, k, v)
# ===== 旋转位置编码 =====
class RotaryPositionEmbedding(nn.Module):
def __init__(self, dim, max_position=8192, base=10000):
super().__init__()
self.rope = ops_transformer.RotaryEmbeddingOp(
dim=dim,
max_position_embeddings=max_position,
base=base
)
def forward(self, q, k, start_pos=0):
# 应用RoPE到query和key
self.rope.apply(q, k, start_pos)
return q, k
# ===== RMS归一化 =====
class RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
self.norm_op = ops_transformer.RMSNormOp(epsilon=eps)
def forward(self, x):
return self.norm_op.forward(x, self.weight)
# ===== SwiGLU激活 =====
class SwiGLUFFN(nn.Module):
def __init__(self, hidden_size, intermediate_size):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.swiglu_op = ops_transformer.SwiGLUOp()
def forward(self, x):
gate = self.gate_proj(x)
up = self.up_proj(x)
activated = self.swiglu_op.forward(gate, up)
return self.down_proj(activated)
# ===== 完整Transformer层 =====
class TransformerDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
# 自注意力
self.self_attn = MultiHeadAttention(
hidden_size=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout
)
# RoPE(如果使用)
if config.use_rope:
self.rotary_emb = RotaryPositionEmbedding(
dim=config.hidden_size // config.num_attention_heads,
max_position=config.max_position_embeddings,
base=config.rope_theta
)
else:
self.rotary_emb = None
# 归一化
self.input_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# FFN
self.mlp = SwiGLUFFN(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size
)
def forward(self, x, attention_mask=None, start_pos=0):
# 自注意力子层(Pre-Norm)
residual = x
x = self.input_norm(x)
attn_out = self.self_attn(x, attention_mask)
x = residual + attn_out
# FFN子层(Pre-Norm)
residual = x
x = self.post_norm(x)
ffn_out = self.mlp(x)
x = residual + ffn_out
return x
# ===== 完整Transformer模型 =====
class TransformerModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# 嵌入层
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
# Transformer层
self.layers = nn.ModuleList([
TransformerDecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
# 最终归一化
self.final_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# 输出头
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def forward(self, input_ids, attention_mask=None, start_pos=0):
# 嵌入
hidden_states = self.embeddings(input_ids)
# 通过各层
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask, start_pos)
# 最终归一化和投影
hidden_states = self.final_norm(hidden_states)
logits = self.lm_head(hidden_states)
return logits
# ===== 使用示例 =====
def main():
# 配置
class Config:
vocab_size = 32000
hidden_size = 4096
num_hidden_layers = 32
num_attention_heads = 32
intermediate_size = 11008
max_position_embeddings = 2048
rms_norm_eps = 1e-6
attention_dropout = 0.0
use_rope = True
rope_theta = 10000.0
config = Config()
# 创建模型
model = TransformerModel(config)
# 前向传播
batch_size = 2
seq_len = 128
input_ids = torch.randint(0, config.vocab_size, (batch_size, seq_len))
with torch.no_grad():
logits = model(input_ids)
print(f"Input shape: {input_ids.shape}")
print(f"Output logits shape: {logits.shape}")
if __name__ == "__main__":
main()
五、应用场景与性能优化
5.1 大语言模型推理
python
import ops_transformer
import torch
class LLMInferenceEngine:
def __init__(self, model_path, config):
self.config = config
self.model = self.load_model(model_path)
# KV缓存优化
self.use_kv_cache = True
self.kv_cache = self.init_kv_cache()
# 使用ops-transformer的PagedAttention
self.paged_attn = ops_transformer.PagedAttentionOp(
num_heads=config.num_attention_heads,
head_dim=config.head_dim,
block_size=16
)
def generate(self, prompt_ids, max_new_tokens=128):
# 编码阶段
prompt_output = self.model.forward_prompt(prompt_ids, self.kv_cache)
# 解码阶段(使用KV缓存)
output_ids = prompt_output.clone()
for _ in range(max_new_tokens):
# 自回归生成
logits = self.model.forward_token(
output_ids[:, -1:], # 只取最后一个token
self.kv_cache
)
next_token = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)
output_ids = torch.cat([output_ids, next_token], dim=1)
# 检查结束符
if next_token.item() == self.config.eos_token_id:
break
return output_ids
@torch.no_grad()
def init_kv_cache(self):
"""初始化KV缓存"""
cache = {}
for layer_idx in range(self.config.num_hidden_layers):
cache[layer_idx] = {
'key': torch.zeros(
self.config.max_batch_size,
self.config.num_attention_heads,
self.config.max_position_embeddings,
self.config.head_dim
),
'value': torch.zeros(
self.config.max_batch_size,
self.config.num_attention_heads,
self.config.max_position_embeddings,
self.config.head_dim
)
}
return cache
5.2 混合精度推理
python
class MixedPrecisionTransformer(nn.Module):
def __init__(self, config):
super().__init__()
# 主权重使用FP16
self.layers = nn.ModuleList([
TransformerDecoderLayer(config).half()
for _ in range(config.num_hidden_layers)
])
# 关键算子使用BF16
self.attention_op = ops_transformer.MixedPrecisionAttentionOp(
compute_dtype=torch.bfloat16,
store_dtype=torch.float16
)
def forward(self, x):
# 自动混合精度
with torch.cuda.amp.autocast(
dtype=torch.bfloat16,
enabled=True
):
for layer in self.layers:
x = layer(x)
return x
5.3 算子融合优化
cpp
// 融合QKV投影和RoPE应用
template<typename T>
class FusedQKVWithRoPE {
public:
Tensor<T> forward(const Tensor<T>& input,
const Tensor<T>& qkv_weight,
const RotaryPositionEmbedding<T>& rope,
int start_pos) {
// 一次性完成QKV投影和RoPE旋转
// 减少中间结果的内存读写
int batch = input.shape(0);
int seq = input.shape(1);
int hidden = input.shape(2);
// QKV投影
auto qkv = matmul(input, qkv_weight);
// 在片上内存中直接应用RoPE
apply_rope_inplace(qkv, rope, start_pos);
return qkv;
}
private:
void apply_rope_inplace(Tensor<T>& qkv,
const RotaryPositionEmbedding<T>& rope,
int start_pos) {
// 直接在qkv tensor上应用RoPE,避免额外分配
// ...
}
};
// 融合RMSNorm和残差连接
template<typename T>
class FusedRMSNormResidual {
public:
Tensor<T> forward(const Tensor<T>& input,
const Tensor<T>& residual,
const RMSNorm<T>& norm) {
// output = residual + norm(input)
// 在一个kernel中完成
int size = input.size();
Tensor<T> output(input.shape());
for (int i = 0; i < size; ++i) {
T normed = norm.normalize_single(input.data()[i]);
output.data()[i] = residual.data()[i] + normed;
}
return output;
}
};
六、性能对比与优化建议
6.1 不同注意力机制的性能对比
| 注意力类型 | 显存占用 | 计算速度 | 精度 | 适用场景 |
|---|---|---|---|---|
| 标准MHA | 高 | 中 | 完全 | 小模型、离线处理 |
| Flash Attention | 中 | 快 | 完全 | 通用场景 |
| GQA (1:4) | 中低 | 快 | 接近 | 长序列生成 |
| MQA | 低 | 最快 | 略降 | 实时推理 |
6.2 优化建议
-
选择合适的注意力机制:
- 推理优先:使用GQA或MQA
- 训练优先:使用Flash Attention
- 长序列:使用分块注意力
-
启用KV缓存:
- 自回归生成必须启用
- 注意缓存内存管理
-
使用混合精度:
- BF16用于计算(避免溢出)
- FP16用于存储(节省内存)
-
算子融合:
- QKV+RoPE融合
- Norm+Residual融合
- FFN两阶段融合
-
批处理优化:
- 动态批处理
- PagedAttention管理
七、总结
ops-transformer作为CANN生态系统中专门针对Transformer模型优化的算子库,提供了:
- 完整的算子覆盖:从基础的自注意力到高级的GQA、Flash Attention
- 卓越的性能表现:通过硬件优化和算法改进实现高效计算
- 灵活的配置选项:支持多种Transformer变体和精度组合
- 便捷的使用方式:提供C++和Python双重接口
通过合理使用ops-transformer,开发者可以显著提升Transformer模型的推理和训练性能,为自然语言处理、计算机视觉等领域的大模型应用提供强有力的支撑。
相关链接
- CANN组织链接 : https://atomgit.com/cann
- ops-transformer仓库链接 : https://atomgit.com/cann/ops-transformer