文章目录
高中数学,数列、数学归纳法、导数证明,知识大纲;
一、数列
- 定义:带有顺序性的一列数,称为数列;
- 通项公式:项数用角标表示,第n项成为通项公式 a n a_n an
- 递推公式:由初始若干项和递推关系确定的数列;写作 a n = c 1 a n − 1 + c 2 a n − 2 + ⋯ + c k a n − k + f ( n ) a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n) an=c1an−1+c2an−2+⋯+ckan−k+f(n)
- 列举法:直接写出数列的若干项,例如 1 , 4 , 9 , 16 , ... 1, 4, 9, 16, \ldots 1,4,9,16,...。
1.1 等差数列
定义:相邻两项之间差值为常数,称为公差d;
通项公式: a n = a 1 + ( n − 1 ) ⋅ d a_n = a_1 + (n - 1) \cdot d an=a1+(n−1)⋅d
等差中项: a 2 = a 1 + a 3 2 a_2 = \frac{a_1 + a_3}{2} a2=2a1+a3
等差数列前n项和:设等差数列的首项为 a 1 a_1 a1,公差为 d d d,第n项为 a n a_n an。根据等差数列性质,第n项可表示为:
a n = a 1 + ( n − 1 ) d a_n = a_1 + (n-1)d an=a1+(n−1)d前n项和 S n S_n Sn可通过配对法推导。将数列正序与倒序相加:
S n = a 1 + a 2 + ⋯ + a n − 1 + a n S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n Sn=a1+a2+⋯+an−1+an S n = a n + a n − 1 + ⋯ + a 2 + a 1 S_n = a_n + a_{n-1} + \cdots + a_2 + a_1 Sn=an+an−1+⋯+a2+a1两式相加后,每对 ( a 1 + a n ) (a_1 + a_n) (a1+an)均相等,共 n n n对,因此: 2 S n = n ( a 1 + a n ) 2S_n = n(a_1 + a_n) 2Sn=n(a1+an)最终得到求和公式: S n = n ( a 1 + a n ) 2 S_n = \frac{n(a_1 + a_n)}{2} Sn=2n(a1+an)常用变形
将 a n a_n an表达式代入后,公式可变形为:
S n = n 2 [ 2 a 1 + ( n − 1 ) d ] S_n = \frac{n}{2} [2a_1 + (n-1)d] Sn=2n[2a1+(n−1)d]
1.2 等比数列
定义:相邻两项之间比值为常数,称为公比q;
通项公式: a n = a 1 ⋅ q n − 1 a_n = a_1 \cdot q^{n-1} an=a1⋅qn−1
等比中项: a 2 2 = a 1 × a 3 a_2^{2} = a_1 \times a_3 a22=a1×a3
等比数列前n项和:
1、当公比 q = 1 q = 1 q=1 时,所有项均为 a 1 a_1 a1,此时和为:
S n = n ⋅ a 1 S_n = n \cdot a_1 Sn=n⋅a1 2、写出前n项和表达式:
S n = a 1 + a 1 q + a 1 q 2 + ⋯ + a 1 q n − 1 S_n = a_1 + a_1 q + a_1 q^2 + \cdots + a_1 q^{n-1} Sn=a1+a1q+a1q2+⋯+a1qn−1两边同乘公比q:
q S n = a 1 q + a 1 q 2 + ⋯ + a 1 q n q S_n = a_1 q + a_1 q^2 + \cdots + a_1 q^{n} qSn=a1q+a1q2+⋯+a1qn两式相减: S n − q S n = a 1 − a 1 q n S_n - q S_n = a_1 - a_1 q^n Sn−qSn=a1−a1qn提取公因式后: S n ( 1 − q ) = a 1 ( 1 − q n ) S_n (1 - q) = a_1 (1 - q^n) Sn(1−q)=a1(1−qn)解得前n项和: S n = a 1 ( 1 − q n ) 1 − q S_n = \frac{a_1 (1 - q^n)}{1 - q} Sn=1−qa1(1−qn)
二、数学归纳法
- 证明命题: 1 + 2 + ⋯ + n = n ( n + 1 ) 2 1 + 2 + \cdots + n = \frac{n(n+1)}{2} 1+2+⋯+n=2n(n+1);定义域为自然数
- 基础步骤:当 ( n = 1 ) 时,左边为 ( 1 ),右边为 ( 1 × 2 2 = 1 ) ( \frac{1 \times 2}{2} = 1 ) (21×2=1),等式成立。
- 归纳假设:假设命题对 ( n = k ) 成立,即 1 + 2 + ⋯ + k = k ( k + 1 ) 2 1 + 2 + \cdots + k = \frac{k(k+1)}{2} 1+2+⋯+k=2k(k+1)。
- 归纳步骤:对于 ( n = k + 1 ),左边为 ( 1 + 2 + ⋯ + k + ( k + 1 ) ) ( 1 + 2 + \cdots + k + (k+1) ) (1+2+⋯+k+(k+1))。根据归纳假设,可替换为 k ( k + 1 ) 2 + ( k + 1 ) \frac{k(k+1)}{2} + (k+1) 2k(k+1)+(k+1),化简后得到 ( k + 1 ) ( k + 2 ) 2 \frac{(k+1)(k+2)}{2} 2(k+1)(k+2),与右边一致。
- 案例:证明任意正整数 n ≥ 1 n \geq 1 n≥1时, 1 3 + 2 3 + ⋯ + n 3 = ( 1 + 2 + ⋯ + n ) 2 1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2 13+23+⋯+n3=(1+2+⋯+n)2。
基础步骤 n = 1 n = 1 n=1
验证当 n = 1 n = 1 n=1时等式成立: 1 3 = 1 且 ( 1 ) 2 = 1 1^3 = 1 \quad \text{且} \quad (1)^2 = 1 13=1且(1)2=1 显然 ( 1 = 1 ),基础步骤成立。
归纳假设
假设对于某个正整数 k ≥ 1 k \geq 1 k≥1,等式成立: 1 3 + 2 3 + ⋯ + k 3 = ( 1 + 2 + ⋯ + k ) 2 1^3 + 2^3 + \cdots + k^3 = (1 + 2 + \cdots + k)^2 13+23+⋯+k3=(1+2+⋯+k)2
归纳步骤(证明 n = k + 1 n = k + 1 n=k+1 时成立)
需证明: 1 3 + 2 3 + ⋯ + k 3 + ( k + 1 ) 3 = ( 1 + 2 + ⋯ + k + ( k + 1 ) ) 2 1^3 + 2^3 + \cdots + k^3 + (k + 1)^3 = (1 + 2 + \cdots + k + (k + 1))^2 13+23+⋯+k3+(k+1)3=(1+2+⋯+k+(k+1))2
根据归纳假设,左边可替换为: ( 1 + 2 + ⋯ + k ) 2 + ( k + 1 ) 3 (1 + 2 + \cdots + k)^2 + (k + 1)^3 (1+2+⋯+k)2+(k+1)3
利用等差数列求和公式 1 + 2 + ⋯ + k = k ( k + 1 ) 2 1 + 2 + \cdots + k = \frac{k(k + 1)}{2} 1+2+⋯+k=2k(k+1),将上式展开: ( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3 = k 2 ( k + 1 ) 2 4 + ( k + 1 ) 3 \left( \frac{k(k + 1)}{2} \right)^2 + (k + 1)^3 = \frac{k^2(k + 1)^2}{4} + (k + 1)^3 (2k(k+1))2+(k+1)3=4k2(k+1)2+(k+1)3
合并同类项: k 2 ( k + 1 ) 2 + 4 ( k + 1 ) 3 4 = ( k + 1 ) 2 ( k 2 + 4 k + 4 ) 4 = ( k + 1 ) 2 ( k + 2 ) 2 4 \frac{k^2(k + 1)^2 + 4(k + 1)^3}{4} = \frac{(k + 1)^2(k^2 + 4k + 4)}{4} = \frac{(k + 1)^2(k + 2)^2}{4} 4k2(k+1)2+4(k+1)3=4(k+1)2(k2+4k+4)=4(k+1)2(k+2)2
右边同样利用求和公式: ( 1 + 2 + ⋯ + ( k + 1 ) ) 2 = ( ( k + 1 ) ( k + 2 ) 2 ) 2 = ( k + 1 ) 2 ( k + 2 ) 2 4 (1 + 2 + \cdots + (k + 1))^2 = \left( \frac{(k + 1)(k + 2)}{2} \right)^2 = \frac{(k + 1)^2(k + 2)^2}{4} (1+2+⋯+(k+1))2=(2(k+1)(k+2))2=4(k+1)2(k+2)2 左右两边相等,归纳步骤完成
三、导数公式证明
- 常数函数的导数
对于常数函数 f ( x ) = c f(x) = c f(x)=c,其导数为: f ′ ( x ) = 0 f'(x) = 0 f′(x)=0
证明:
根据导数的定义: f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 c − c h = lim h → 0 0 = 0 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0 f′(x)=limh→0hf(x+h)−f(x)=limh→0hc−c=limh→00=0- 一次函数的基本形式
一次函数的标准形式为: f ( x ) = a x + b f(x) = ax + b f(x)=ax+b
将一次函数 f ( x ) = a x + b f(x) = ax + b f(x)=ax+b代入导数定义: f ′ ( x ) = lim h → 0 a ( x + h ) + b − ( a x + b ) h f'(x) = \lim_{h \to 0} \frac{a(x + h) + b - (ax + b)}{h} f′(x)=limh→0ha(x+h)+b−(ax+b)
展开并简化表达式: f ′ ( x ) = lim h → 0 a x + a h + b − a x − b h f'(x) = \lim_{h \to 0} \frac{ax + ah + b - ax - b}{h} f′(x)=limh→0hax+ah+b−ax−b f ′ ( x ) = lim h → 0 a h h f'(x) = \lim_{h \to 0} \frac{ah}{h} f′(x)=limh→0hah f ′ ( x ) = lim h → 0 a f'(x) = \lim_{h \to 0} a f′(x)=limh→0a f ′ ( x ) = a f'(x) = a f′(x)=a- 幂函数的导数
对于幂函数 f ( x ) = x n f(x) = x^n f(x)=xn( n 为实数),其导数为: f ′ ( x ) = n x n − 1 f'(x) = n x^{n-1} f′(x)=nxn−1
证明:
使用二项式定理展开 ( x + h ) n (x+h)^n (x+h)n: f ′ ( x ) = lim h → 0 ( x + h ) n − x n h f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} f′(x)=limh→0h(x+h)n−xn 展开后忽略高阶无穷小项: ( x + h ) n = x n + n x n − 1 h + O ( h 2 ) (x+h)^n = x^n + n x^{n-1} h + O(h^2) (x+h)n=xn+nxn−1h+O(h2) 因此: f ′ ( x ) = lim h → 0 n x n − 1 h + O ( h 2 ) h = n x n − 1 f'(x) = \lim_{h \to 0} \frac{n x^{n-1} h + O(h^2)}{h} = n x^{n-1} f′(x)=limh→0hnxn−1h+O(h2)=nxn−1- 指数函数的导数
对于指数函数 f ( x ) = a x f(x) = a^x f(x)=ax,其导数为: f ′ ( x ) = a x ln a f'(x) = a^x \ln a f′(x)=axlna
证明:
化简导数表达式
利用指数函数的性质 a x + h = a x ⋅ a h a^{x+h} = a^x \cdot a^h ax+h=ax⋅ah,导数表达式可化简为: f ′ ( x ) = a x ⋅ lim h → 0 a h − 1 h f'(x) = a^x \cdot \lim_{h \to 0} \frac{a^h - 1}{h} f′(x)=ax⋅limh→0hah−1
1、一般底数 ( a ) 的导数
对于任意底数 ( a ),可以通过换底公式 a x = e x ln a a^x = e^{x \ln a} ax=exlna进行转换。利用链式法则: f ′ ( x ) = d d x e x ln a = e x ln a ⋅ ln a = a x ln a f'(x) = \frac{d}{dx} e^{x \ln a} = e^{x \ln a} \cdot \ln a = a^x \ln a f′(x)=dxdexlna=exlna⋅lna=axlna
极限 lim h → 0 a h − 1 h = ln a \lim_{h \to 0} \frac{a^h - 1}{h} = \ln a limh→0hah−1=lna 的证明
2、设 k = a h − 1 k = a^h - 1 k=ah−1,当 h → 0 h \to 0 h→0 时 k → 0 k \to 0 k→0。改写极限为: lim h → 0 a h − 1 h = lim k → 0 k log a ( 1 + k ) \lim_{h \to 0} \frac{a^h - 1}{h} = \lim_{k \to 0} \frac{k}{\log_a (1 + k)} limh→0hah−1=limk→0loga(1+k)k 利用对数换底公式 log a ( 1 + k ) = ln ( 1 + k ) ln a \log_a (1 + k) = \frac{\ln (1 + k)}{\ln a} loga(1+k)=lnaln(1+k),极限变为: lim k → 0 k ln a ln ( 1 + k ) = ln a ⋅ lim k → 0 k ln ( 1 + k ) \lim_{k \to 0} \frac{k \ln a}{\ln (1 + k)} = \ln a \cdot \lim_{k \to 0} \frac{k}{\ln (1 + k)} limk→0ln(1+k)klna=lna⋅limk→0ln(1+k)k 已知 lim k → 0 ln ( 1 + k ) k = 1 \lim_{k \to 0} \frac{\ln (1 + k)}{k} = 1 limk→0kln(1+k)=1,因此: lim h → 0 a h − 1 h = ln a \lim_{h \to 0} \frac{a^h - 1}{h} = \ln a limh→0hah−1=lna
最终导数公式
综合上述结果,指数函数 f ( x ) = a x f(x) = a^x f(x)=ax 的导数为: f ′ ( x ) = a x ln a f'(x) = a^x \ln a f′(x)=axlna 特别地,当 a = e a = e a=e时: f ′ ( x ) = e x f'(x) = e^x f′(x)=ex- 对数函数的导数
一般对数函数可以表示为自然对数函数的线性变换: log a ( x ) = ln ( x ) ln ( a ) \log_a(x) = \frac{\ln(x)}{\ln(a)} loga(x)=ln(a)ln(x)
对两边求导数: d d x log a ( x ) = 1 ln ( a ) ⋅ d d x ln ( x ) \frac{d}{dx} \log_a(x) = \frac{1}{\ln(a)} \cdot \frac{d}{dx} \ln(x) dxdloga(x)=ln(a)1⋅dxdln(x)
代入自然对数函数的导数结果: d d x log a ( x ) = 1 x ln ( a ) \frac{d}{dx} \log_a(x) = \frac{1}{x \ln(a)} dxdloga(x)=xln(a)1
使用极限定义证明
从导数的定义出发: d d x log a ( x ) = lim h → 0 log a ( x + h ) − log a ( x ) h \frac{d}{dx} \log_a(x) = \lim_{h \to 0} \frac{\log_a(x + h) - \log_a(x)}{h} dxdloga(x)=limh→0hloga(x+h)−loga(x)
利用对数性质化简分子: log a ( 1 + h x ) h = 1 h ⋅ log a ( 1 + h x ) \frac{\log_a\left(1 + \frac{h}{x}\right)}{h} = \frac{1}{h} \cdot \log_a\left(1 + \frac{h}{x}\right) hloga(1+xh)=h1⋅loga(1+xh)
令 t = h x t = \frac{h}{x} t=xh,当 h → 0 h \to 0 h→0时 t → 0 t \to 0 t→0: 1 x t log a ( 1 + t ) = 1 x ⋅ log a ( 1 + t ) t \frac{1}{x t} \log_a(1 + t) = \frac{1}{x} \cdot \frac{\log_a(1 + t)}{t} xt1loga(1+t)=x1⋅tloga(1+t)
利用换底公式和对数极限: lim t → 0 log a ( 1 + t ) t = lim t → 0 ln ( 1 + t ) t ln ( a ) = 1 ln ( a ) \lim_{t \to 0} \frac{\log_a(1 + t)}{t} = \lim_{t \to 0} \frac{\ln(1 + t)}{t \ln(a)} = \frac{1}{\ln(a)} limt→0tloga(1+t)=limt→0tln(a)ln(1+t)=ln(a)1
最终结果为: d d x log a ( x ) = 1 x ln ( a ) \frac{d}{dx} \log_a(x) = \frac{1}{x \ln(a)} dxdloga(x)=xln(a)1- 三角函数的导数
对于正弦函数 f ( x ) = sin x f(x) = \sin x f(x)=sinx,其导数为: f ′ ( x ) = cos x f'(x) = \cos x f′(x)=cosx
证明:
利用和角公式: sin ( x + h ) = sin x cos h + cos x sin h \sin(x+h) = \sin x \cos h + \cos x \sin h sin(x+h)=sinxcosh+cosxsinh 根据导数的定义: f ′ ( x ) = lim h → 0 sin ( x + h ) − sin x h = lim h → 0 sin x ( cos h − 1 ) + cos x sin h h f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h} f′(x)=limh→0hsin(x+h)−sinx=limh→0hsinx(cosh−1)+cosxsinh 利用极限 lim h → 0 sin h h = 1 \lim_{h \to 0} \frac{\sin h}{h} = 1 limh→0hsinh=1和 lim h → 0 cos h − 1 h = 0 \lim_{h \to 0} \frac{\cos h - 1}{h} = 0 limh→0hcosh−1=0: f ′ ( x ) = cos x f'(x) = \cos x f′(x)=cosx- 对于余弦函数 f ( x ) = cos x f(x) = \cos x f(x)=cosx,其导数为: f ′ ( x ) = − sin x f'(x) = -\sin x f′(x)=−sinx
证明:
类似地,利用和角公式: cos ( x + h ) = cos x cos h − sin x sin h \cos(x+h) = \cos x \cos h - \sin x \sin h cos(x+h)=cosxcosh−sinxsinh 根据导数的定义: f ′ ( x ) = lim h → 0 cos ( x + h ) − cos x h = lim h → 0 cos x ( cos h − 1 ) − sin x sin h h f'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x (\cos h - 1) - \sin x \sin h}{h} f′(x)=limh→0hcos(x+h)−cosx=limh→0hcosx(cosh−1)−sinxsinh 利用相同的极限: f ′ ( x ) = − sin x f'(x) = -\sin x f′(x)=−sinx- 注释:
1、 O ( h 2 ) O(h^2) O(h2),用于描述函数或算法的误差阶数或收敛速率,二次收敛(更高精度)
2、当 t → 0 t \to 0 t→0 时,以下等价关系成立:
ln ( 1 + t ) ∼ t \ln(1 + t) \sim t ln(1+t)∼t
e t − 1 ∼ t e^t - 1 \sim t et−1∼t
sin t ∼ t \sin t \sim t sint∼t
tan t ∼ t \tan t \sim t tant∼t
1 − cos t ∼ 1 2 t 2 1 - \cos t \sim \frac{1}{2}t^2 1−cost∼21t2
则有以下表达: lim t → 0 ln ( 1 + t ) t = 1 \lim_{t \to 0} \frac{\ln(1 + t)}{t} = 1 t→0limtln(1+t)=1 lim t → 0 e t − 1 t = 1 \lim_{t \to 0} \frac{e^t - 1}{t} = 1 t→0limtet−1=1 lim t → 0 sin t t = 1 \lim_{t \to 0} \frac{\sin t}{t} = 1 t→0limtsint=1 lim t → 0 tan t t = 1 \lim_{t \to 0} \frac{\tan t}{t} = 1 t→0limttant=1 lim h → 0 cos h − 1 h = lim h → 0 − h 2 2 h = lim h → 0 − h 2 = 0 \lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{-\frac{h^2}{2}}{h} = \lim_{h \to 0} -\frac{h}{2} = 0 h→0limhcosh−1=h→0limh−2h2=h→0lim−2h=0