基于CANN GE图引擎的深度学习模型编译与优化技术

引言

GE(Graph Engine)是CANN的核心图编译器和执行器,负责将深度学习计算图转换为高效的硬件执行计划。本文将深入解析GE的架构设计、图优化技术以及模型编译流程,帮助开发者理解和应用GE进行模型性能优化。

相关链接:

一、GE图引擎架构概述

1.1 核心架构

GE采用分层架构设计,自上而下包含以下核心组件:

复制代码
┌─────────────────────────────────────────────────────┐
│          前端接口层 (Frontend Interface)            │
│    PyTorch Frontend | TensorFlow Frontend | ONNX   │
├─────────────────────────────────────────────────────┤
│          图构建层 (Graph Construction)              │
│    IR Builder | Graph Parser | Validator            │
├─────────────────────────────────────────────────────┤
│          图优化层 (Graph Optimization)              │
│    Pass Manager | Optimization Passes               │
├──────────────────┬──────────────────┬───────────────┤
│   算子融合      │   内存优化       │  调度优化    │
├──────────────────┴──────────────────┴───────────────┤
│          代码生成层 (Code Generation)               │
│    Kernel Selection | Binary Generation             │
├─────────────────────────────────────────────────────┤
│          执行引擎层 (Execution Engine)              │
│    Stream Scheduler | Memory Manager | Executor    │
└─────────────────────────────────────────────────────┘

1.2 主要功能模块

模块 功能描述 核心能力
图构建 解析前端模型,构建计算图IR 多框架支持、类型推导
图优化 应用各种优化Pass提升性能 算子融合、常量折叠、死代码消除
内存管理 优化内存分配和复用 内存复用、inplace优化
调度优化 优化算子执行顺序 多流并行、异步执行
代码生成 生成最终的可执行代码 Kernel选择、二进制生成

1.3 目录结构

复制代码
ge/
├── include/
│   ├── ge/ge_api.h               # 公共API头文件
│   ├── ge/graph.h                # 计算图定义
│   ├── ge/ir_builder.h           # IR构建接口
│   └── ge/pass_manager.h         # Pass管理器
├── src/
│   ├── ir/                       # 中间表示定义
│   │   ├── node.cc
│   │   ├── edge.cc
│   │   └── graph.cc
│   ├── builder/                  # 图构建
│   │   ├── ir_builder.cc
│   │   └── graph_builder.cc
│   ├── passes/                   # 优化Pass
│   │   ├── fusion/
│   │   │   ├── conv_bn_fusion.cc
│   │   │   └── matmul_add_fusion.cc
│   │   ├── memory/
│   │   │   ├── memory_optimize.cc
│   │   │   └── inplace_opt.cc
│   │   └── transform/
│   │       ├── const_fold.cc
│   │       └── dead_elim.cc
│   ├── scheduler/                # 调度器
│   │   ├── multi_stream_sched.cc
│   │   └── memory_scheduler.cc
│   └── executor/                 # 执行引擎
│       ├── graph_executor.cc
│       └── stream_executor.cc
├── tests/
├── examples/
└── docs/

二、计算图构建

2.1 基础图构建

cpp 复制代码
#include <memory>
#include "ge/ge_api.h"
#include "ge/ir_builder.h"

using namespace ge;

class GraphBuilder {
public:
    // 创建简单的计算图
    GraphPtr BuildSimpleGraph() {
        // 创建计算图
        auto graph = Graph::Make("SimpleGraph");

        // 创建数据节点
        auto data1 = OpData::Make("data1", DT_FLOAT, {1, 3, 224, 224});
        auto data2 = OpData::Make("data2", DT_FLOAT, {64, 3, 7, 7});
        auto data3 = OpData::Make("data3", DT_FLOAT, {64});

        // 创建卷积算子
        auto conv = Op::Make("Conv2D");
        conv->SetAttr("strides", std::vector<int64_t>{1, 1, 1, 1});
        conv->SetAttr("pads", std::vector<int64_t>{0, 0, 0, 0});
        conv->SetAttr("dilations", std::vector<int64_t>{1, 1, 1, 1});
        conv->SetAttr("groups", 1);
        conv->SetAttr("data_format", "NCHW");

        // 创建BiasAdd算子
        auto bias_add = Op::Make("BiasAdd");
        bias_add->SetAttr("data_format", "NCHW");

        // 创建Relu算子
        auto relu = Op::Make("Relu");

        // 创建Pooling算子
        auto pool = Op::Make("MaxPool");
        pool->SetAttr("ksize", std::vector<int64_t>{1, 1, 2, 2});
        pool->SetAttr("strides", std::vector<int64_t>{1, 1, 2, 2});
        pool->SetAttr("pads", std::vector<int64_t>{0, 0, 0, 0});
        pool->SetAttr("data_format", "NCHW");

        // 建立连接关系
        auto conv_out = graph->AddNode(conv);
        auto bias_out = graph->AddNode(bias_add);
        auto relu_out = graph->AddNode(relu);
        auto pool_out = graph->AddNode(pool);

        // 添加数据节点到图
        graph->AddDataNode(data1);
        graph->AddDataNode(data2);
        graph->AddDataNode(data3);

        // 建立边连接
        graph->AddDataEdge(data1, 0, conv_out, 0);    // data1 -> conv
        graph->AddDataEdge(data2, 0, conv_out, 1);    // data2 -> conv (weight)
        graph->AddDataEdge(conv_out, 0, bias_out, 0); // conv -> bias_add
        graph->AddDataEdge(data3, 0, bias_out, 1);    // data3 -> bias_add (bias)
        graph->AddDataEdge(bias_out, 0, relu_out, 0); // bias_add -> relu
        graph->AddDataEdge(relu_out, 0, pool_out, 0); // relu -> pool

        // 设置输出
        graph->SetOutput({pool_out});

        return graph;
    }

    // 使用IR Builder构建图
    GraphPtr BuildGraphWithIRBuilder() {
        // 创建IR Builder
        auto builder = IRBuilder::Create("MyGraph");

        // 添加输入
        auto input = builder->AddInput("input", DT_FLOAT, {1, 3, 224, 224});

        // 添加常量(权重)
        auto weight = builder->AddConstant("weight", DT_FLOAT, {64, 3, 7, 7},
                                         InitWeightData());
        auto bias = builder->AddConstant("bias", DT_FLOAT, {64},
                                       InitBiasData());

        // 构建卷积层
        auto conv = builder->AddOp("Conv2D", {input, weight});
        builder->SetAttr(conv, "strides", std::vector<int64_t>{1, 1, 1, 1});
        builder->SetAttr(conv, "pads", std::vector<int64_t>{0, 0, 0, 0});

        // 构建BiasAdd
        auto bias_add = builder->AddOp("BiasAdd", {conv, bias});

        // 构建ReLU
        auto relu = builder->AddOp("Relu", {bias_add});

        // 构建MaxPool
        auto pool = builder->AddOp("MaxPool", {relu});
        builder->SetAttr(pool, "ksize", std::vector<int64_t>{1, 1, 2, 2});
        builder->SetAttr(pool, "strides", std::vector<int64_t>{1, 1, 2, 2});

        // 设置输出
        builder->SetOutput({pool});

        return builder->Build();
    }

private:
    std::vector<float> InitWeightData() {
        return std::vector<float>(64 * 3 * 7 * 7, 0.1f);
    }

    std::vector<float> InitBiasData() {
        return std::vector<float>(64, 0.0f);
    }
};

2.2 从ONNX构建图

cpp 复制代码
#include "ge/onnx_parser.h"

class ONNXGraphImporter {
public:
    GraphPtr ImportFromONNX(const std::string& onnx_path) {
        // 创建ONNX解析器
        auto parser = ONNXParser::Create();

        // 配置解析选项
        ParseOptions options;
        options.enable_fusion = true;
        options.enable_shape_inference = true;
        options.enable_const_fold = true;

        // 解析ONNX模型
        auto parse_result = parser->Parse(onnx_path, options);
        if (!parse_result.success) {
            std::cerr << "Failed to parse ONNX: " << parse_result.error_msg << std::endl;
            return nullptr;
        }

        // 获取计算图
        auto graph = parse_result.graph;

        // 打印图信息
        PrintGraphInfo(graph);

        return graph;
    }

    // 使用形状推断优化图
    GraphPtr ImportWithShapeInference(const std::string& onnx_path,
                                    const std::map<std::string, Shape>& input_shapes) {
        auto parser = ONNXParser::Create();

        // 设置输入形状
        parser->SetInputShapes(input_shapes);

        // 启用形状推断
        ParseOptions options;
        options.enable_shape_inference = true;
        options.infer_dynamic_shape = true;

        auto result = parser->Parse(onnx_path, options);
        return result.graph;
    }

private:
    void PrintGraphInfo(GraphPtr graph) {
        std::cout << "=== Graph Information ===" << std::endl;
        std::cout << "Graph name: " << graph->GetName() << std::endl;
        std::cout << "Number of nodes: " << graph->GetNodeCount() << std::endl;
        std::cout << "Number of inputs: " << graph->GetInputCount() << std::endl;
        std::cout << "Number of outputs: " << graph->GetOutputCount() << std::endl;

        // 打印输入输出信息
        auto inputs = graph->GetInputs();
        std::cout << "Inputs:" << std::endl;
        for (const auto& input : inputs) {
            auto shape = input->GetShape();
            std::cout << "  " << input->GetName() << ": [";
            for (size_t i = 0; i < shape.size(); ++i) {
                std::cout << shape[i];
                if (i < shape.size() - 1) std::cout << ", ";
            }
            std::cout << "]" << std::endl;
        }
    }
};

三、图优化技术

3.1 算子融合优化

cpp 复制代码
#include "ge/pass_manager.h"

class FusionOptimization {
public:
    // Conv+BN融合
    class ConvBNFusionPass : public GraphPass {
    public:
        bool Run(GraphPtr graph) override {
            bool modified = false;

            // 遍历图中的所有Conv节点
            auto conv_nodes = graph->GetNodesByType("Conv2D");
            for (auto conv_node : conv_nodes) {
                // 查找Conv后的BatchNorm
                auto bn_node = FindSuccessorBatchNorm(conv_node);
                if (bn_node == nullptr) continue;

                // 检查是否可以融合
                if (!CanFuseConvBN(conv_node, bn_node)) continue;

                // 执行融合
                FuseConvBN(conv_node, bn_node);
                modified = true;

                std::cout << "Fused Conv+BN: " << conv_node->GetName()
                          << " + " << bn_node->GetName() << std::endl;
            }

            return modified;
        }

    private:
        NodePtr FindSuccessorBatchNorm(NodePtr conv_node) {
            auto outputs = conv_node->GetOutNodes();
            for (auto output : outputs) {
                if (output->GetType() == "BatchNormalization") {
                    return output;
                }
            }
            return nullptr;
        }

        bool CanFuseConvBN(NodePtr conv, NodePtr bn) {
            // 检查是否只有一个使用者
            if (conv->GetOutNodes().size() != 1) return false;

            // 检查训练模式(推理模式才能融合)
            std::string training_mode;
            if (!bn->GetAttr("training", training_mode)) return false;
            if (training_mode == "True") return false;

            return true;
        }

        void FuseConvBN(NodePtr conv, NodePtr bn) {
            // 获取Conv权重和偏置
            auto conv_weight = GetNodeWeight(conv, "filter");
            auto conv_bias = GetNodeBias(conv);

            // 获取BN参数
            auto bn_gamma = GetNodeWeight(bn, "scale");
            auto bn_beta = GetNodeWeight(bn, "bias");
            auto bn_mean = GetNodeWeight(bn, "mean");
            auto bn_var = GetNodeWeight(bn, "variance");

            float epsilon = 1e-5;
            bn->GetAttr("epsilon", epsilon);

            // 计算融合后的权重和偏置
            auto fused_weight = ComputeFusedWeight(conv_weight, bn_gamma, bn_mean, bn_var, epsilon);
            auto fused_bias = ComputeFusedBias(conv_bias, conv_weight, bn_gamma, bn_beta, bn_mean, bn_var, epsilon);

            // 更新Conv节点
            UpdateNodeWeight(conv, "filter", fused_weight);
            if (conv_bias) {
                UpdateNodeBias(conv, fused_bias);
            } else {
                SetNodeBias(conv, fused_bias);
            }

            // 替换BN的输出为Conv的输出
            ReplaceNode(bn, conv);
        }

        std::vector<float> ComputeFusedWeight(const std::vector<float>& conv_w,
                                           const std::vector<float>& gamma,
                                           const std::vector<float>& mean,
                                           const std::vector<float>& var,
                                           float eps) {
            // fused_weight = conv_w * gamma / sqrt(var + eps)
            std::vector<float> fused(conv_w.size());
            float sqrt_var = std::sqrt(var[0] + eps);
            float scale = gamma[0] / sqrt_var;

            for (size_t i = 0; i < conv_w.size(); ++i) {
                fused[i] = conv_w[i] * scale;
            }
            return fused;
        }
    };

    // MatMul+Add融合
    class MatMulAddFusionPass : public GraphPass {
    public:
        bool Run(GraphPtr graph) override {
            auto matmul_nodes = graph->GetNodesByType("MatMul");
            bool modified = false;

            for (auto matmul_node : matmul_nodes) {
                auto add_node = FindSuccessorAdd(matmul_node);
                if (add_node == nullptr) continue;

                // 检查Add的另一个输入是否是常量
                auto add_input = GetOtherInput(add_node, matmul_node);
                if (!IsConstant(add_input)) continue;

                // 执行融合:将bias添加到MatMul的输出
                FuseMatMulAdd(matmul_node, add_node, add_input);
                modified = true;
            }

            return modified;
        }

    private:
        NodePtr FindSuccessorAdd(NodePtr matmul) {
            auto outputs = matmul->GetOutNodes();
            for (auto output : outputs) {
                if (output->GetType() == "Add") {
                    return output;
                }
            }
            return nullptr;
        }

        NodePtr GetOtherInput(NodePtr add_node, NodePtr matmul_node) {
            auto inputs = add_node->GetInNodes();
            for (auto input : inputs) {
                if (input != matmul_node) {
                    return input;
                }
            }
            return nullptr;
        }

        bool IsConstant(NodePtr node) {
            return node->GetType() == "Constant";
        }

        void FuseMatMulAdd(NodePtr matmul, NodePtr add, NodePtr bias) {
            // 获取bias数据
            auto bias_data = GetNodeWeight(bias);

            // 在MatMul节点上添加bias属性
            matmul->SetAttr("has_bias", true);
            matmul->SetAttr("bias", bias_data);

            // 替换Add为MatMul
            ReplaceNode(add, matmul);
        }
    };
};

3.2 内存优化

cpp 复制代码
class MemoryOptimization {
public:
    // 内存复用优化
    class MemoryReusePass : public GraphPass {
    public:
        bool Run(GraphPtr graph) override {
            // 构建内存活跃性分析
            auto live_ranges = AnalyzeLiveRanges(graph);

            // 执行内存复用
            auto reuse_plan = ComputeMemoryReuse(live_ranges);

            // 应用复用计划
            ApplyMemoryReuse(graph, reuse_plan);

            return true;
        }

    private:
        struct LiveRange {
            int start;
            int end;
            size_t size;
        };

        std::map<NodePtr, LiveRange> AnalyzeLiveRanges(GraphPtr graph) {
            std::map<NodePtr, LiveRange> live_ranges;

            // 拓扑排序
            auto sorted_nodes = TopologicalSort(graph);

            int schedule_id = 0;
            for (auto node : sorted_nodes) {
                // 获取输出tensor大小
                size_t tensor_size = EstimateTensorSize(node);

                LiveRange range;
                range.start = schedule_id;
                range.end = schedule_id;  // 将在后续更新
                range.size = tensor_size;

                live_ranges[node] = range;
                schedule_id++;
            }

            // 计算每个tensor的最后使用点
            ComputeLastUses(live_ranges, graph);

            return live_ranges;
        }

        void ComputeLastUses(std::map<NodePtr, LiveRange>& live_ranges, GraphPtr graph) {
            // 反向遍历,更新每个tensor的end
            auto sorted_nodes = TopologicalSort(graph);
            std::reverse(sorted_nodes.begin(), sorted_nodes.end());

            std::map<NodePtr, int> last_uses;

            for (auto node : sorted_nodes) {
                // 检查输入
                auto inputs = node->GetInNodes();
                for (auto input : inputs) {
                    if (live_ranges.find(input) != live_ranges.end()) {
                        if (last_uses.find(input) == last_uses.end()) {
                            last_uses[input] = node->GetId();
                        }
                    }
                }
            }

            // 更新live_ranges的end
            for (auto& [node, range] : live_ranges) {
                if (last_uses.find(node) != last_uses.end()) {
                    range.end = last_uses[node];
                }
            }
        }

        std::map<NodePtr, void*> ComputeMemoryReuse(const std::map<NodePtr, LiveRange>& live_ranges) {
            std::map<NodePtr, void*> reuse_plan;

            // 简化策略:贪心算法
            std::vector<void*> memory_blocks;

            for (const auto& [node, range] : live_ranges) {
                bool reused = false;

                // 查找可复用的内存块
                for (auto block : memory_blocks) {
                    if (CanReuseBlock(block, range, live_ranges)) {
                        reuse_plan[node] = block;
                        reused = true;
                        break;
                    }
                }

                // 如果没有可复用的,分配新的
                if (!reused) {
                    void* new_block = AllocateMemory(range.size);
                    memory_blocks.push_back(new_block);
                    reuse_plan[node] = new_block;
                }
            }

            return reuse_plan;
        }

        bool CanReuseBlock(void* block, const LiveRange& range,
                          const std::map<NodePtr, LiveRange>& live_ranges) {
            // 检查该块在range区间内是否被使用
            for (const auto& [node, other_range] : live_ranges) {
                if (other_range.start >= range.start && other_range.start <= range.end) {
                    return false;
                }
            }
            return true;
        }
    };

    // Inplace优化
    class InplaceOptimizationPass : public GraphPass {
    public:
        bool Run(GraphPtr graph) override {
            // 查找可以进行inplace操作的节点
            auto candidates = FindInplaceCandidates(graph);

            // 应用inplace优化
            for (auto candidate : candidates) {
                ApplyInplace(graph, candidate);
            }

            return !candidates.empty();
        }

    private:
        std::vector<NodePtr> FindInplaceCandidates(GraphPtr graph) {
            std::vector<NodePtr> candidates;

            // 查找ReLU等可inplace的算子
            auto relu_nodes = graph->GetNodesByType("Relu");
            for (auto relu : relu_nodes) {
                if (CanInplace(relu)) {
                    candidates.push_back(relu);
                }
            }

            return candidates;
        }

        bool CanInplace(NodePtr node) {
            // 检查输出是否只有一个使用者
            auto out_nodes = node->GetOutNodes();
            if (out_nodes.size() != 1) return false;

            // 检查输入输出形状是否一致
            auto inputs = node->GetInNodes();
            if (inputs.empty()) return false;

            auto input_shape = inputs[0]->GetShape();
            auto output_shape = node->GetShape();

            return input_shape == output_shape;
        }

        void ApplyInplace(GraphPtr graph, NodePtr node) {
            // 设置inplace属性
            node->SetAttr("inplace", true);

            // 修改内存复用关系
            auto inputs = node->GetInNodes();
            if (!inputs.empty()) {
                // 输出复用输入的内存
                node->SetAttr("reuse_input", inputs[0]->GetName());
            }
        }
    };
};

3.3 常量折叠优化

cpp 复制代码
class ConstantFoldingPass : public GraphPass {
public:
    bool Run(GraphPtr graph) override {
        bool modified = false;

        // 获取所有常量节点
        auto constants = graph->GetNodesByType("Constant");

        // 构建常量值缓存
        std::map<NodePtr, Tensor> constant_values;
        for (auto const_node : constants) {
            constant_values[const_node] = EvaluateConstant(const_node);
        }

        // 遍历所有节点,尝试常量折叠
        auto nodes = graph->GetNodes();
        for (auto node : nodes) {
            if (TryFoldNode(node, constant_values)) {
                modified = true;
            }
        }

        // 清理无用的常量节点
        if (modified) {
            RemoveUnusedConstants(graph);
        }

        return modified;
    }

private:
    bool TryFoldNode(NodePtr node, std::map<NodePtr, Tensor>& constant_values) {
        // 检查所有输入是否都是常量
        auto inputs = node->GetInNodes();
        for (auto input : inputs) {
            if (constant_values.find(input) == constant_values.end()) {
                return false;
            }
        }

        // 所有输入都是常量,可以折叠
        auto folded_result = EvaluateNode(node, constant_values);

        // 创建新的常量节点
        auto new_const = CreateConstantNode(node->GetName() + "_folded",
                                          folded_result);

        // 替换原节点
        ReplaceNode(node, new_const);

        // 更新常量值缓存
        constant_values[new_const] = folded_result;

        return true;
    }

    Tensor EvaluateNode(NodePtr node, const std::map<NodePtr, Tensor>& inputs) {
        auto op_type = node->GetType();

        if (op_type == "Add") {
            return EvaluateAdd(node, inputs);
        } else if (op_type == "Mul") {
            return EvaluateMul(node, inputs);
        } else if (op_type == "Sub") {
            return EvaluateSub(node, inputs);
        } else if (op_type == "Div") {
            return EvaluateDiv(node, inputs);
        }

        // 不支持的算子
        return Tensor();
    }

    Tensor EvaluateAdd(NodePtr node, const std::map<NodePtr, Tensor>& inputs) {
        auto in_nodes = node->GetInNodes();
        auto input1 = inputs.at(in_nodes[0]);
        auto input2 = inputs.at(in_nodes[1]);

        Tensor result = input1;
        for (size_t i = 0; i < result.GetDataCount(); ++i) {
            result.GetData<float>()[i] += input2.GetData<float>()[i];
        }

        return result;
    }

    Tensor EvaluateMul(NodePtr node, const std::map<NodePtr, Tensor>& inputs) {
        auto in_nodes = node->GetInNodes();
        auto input1 = inputs.at(in_nodes[0]);
        auto input2 = inputs.at(in_nodes[1]);

        Tensor result = input1;
        for (size_t i = 0; i < result.GetDataCount(); ++i) {
            result.GetData<float>()[i] *= input2.GetData<float>()[i];
        }

        return result;
    }

    void RemoveUnusedConstants(GraphPtr graph) {
        auto constants = graph->GetNodesByType("Constant");
        for (auto const_node : constants) {
            if (const_node->GetOutNodes().empty()) {
                graph->RemoveNode(const_node);
            }
        }
    }
};

四、多流并行调度

4.1 流调度器

cpp 复制代码
class MultiStreamScheduler {
public:
    struct ScheduleConfig {
        int num_streams = 4;
        bool enable_pipeline = true;
        int pipeline_depth = 3;
        bool enable_memory_opt = true;
    };

    // 生成多流执行计划
    ScheduleResult Schedule(GraphPtr graph, const ScheduleConfig& config) {
        ScheduleResult result;

        // 1. 图分区
        auto partitions = PartitionGraph(graph, config.num_streams);

        // 2. 依赖分析
        auto dependencies = AnalyzeDependencies(partitions);

        // 3. 生成执行计划
        if (config.enable_pipeline) {
            result = GeneratePipelineSchedule(partitions, dependencies, config);
        } else {
            result = GenerateParallelSchedule(partitions, dependencies);
        }

        // 4. 内存优化
        if (config.enable_memory_opt) {
            OptimizeMemoryUsage(result);
        }

        return result;
    }

private:
    // 图分区
    std::vector<GraphPartition> PartitionGraph(GraphPtr graph, int num_partitions) {
        std::vector<GraphPartition> partitions(num_partitions);

        // 简化策略:按层级分配
        auto levels = ComputeGraphLevels(graph);

        for (size_t i = 0; i < levels.size(); ++i) {
            int partition_id = i % num_partitions;
            for (auto node : levels[i]) {
                partitions[partition_id].AddNode(node);
            }
        }

        return partitions;
    }

    // 计算图的层级
    std::vector<std::vector<NodePtr>> ComputeGraphLevels(GraphPtr graph) {
        std::map<NodePtr, int> node_levels;
        std::vector<NodePtr> sorted_nodes = TopologicalSort(graph);

        // 计算每个节点的层级
        for (auto node : sorted_nodes) {
            int max_input_level = -1;
            for (auto input : node->GetInNodes()) {
                if (node_levels.find(input) != node_levels.end()) {
                    max_input_level = std::max(max_input_level, node_levels[input]);
                }
            }
            node_levels[node] = max_input_level + 1;
        }

        // 按层级分组
        std::map<int, std::vector<NodePtr>> level_map;
        for (const auto& [node, level] : node_levels) {
            level_map[level].push_back(node);
        }

        std::vector<std::vector<NodePtr>> levels;
        for (const auto& [level, nodes] : level_map) {
            levels.push_back(nodes);
        }

        return levels;
    }

    // 生成流水线调度
    ScheduleResult GeneratePipelineSchedule(const std::vector<GraphPartition>& partitions,
                                          const DependencyMap& dependencies,
                                          const ScheduleConfig& config) {
        ScheduleResult result;
        result.num_streams = config.num_streams;

        // 为每个分区创建Stream
        for (size_t i = 0; i < partitions.size(); ++i) {
            StreamSchedule stream_sched;
            stream_sched.stream_id = i;
            stream_sched.nodes = partitions[i].GetNodes();

            // 设置与其他Stream的依赖
            for (size_t j = 0; j < partitions.size(); ++j) {
                if (i != j && HasDependency(partitions[i], partitions[j], dependencies)) {
                    stream_sched.dependencies.push_back(j);
                }
            }

            result.stream_schedules.push_back(stream_sched);
        }

        return result;
    }
};

4.2 异步执行

cpp 复制代码
class AsyncGraphExecutor {
public:
    struct ExecutionConfig {
        int num_streams = 4;
        bool enable_profiling = false;
        int queue_depth = 16;
    };

    void ExecuteAsync(GraphPtr graph, const ExecutionConfig& config) {
        // 1. 创建执行计划
        MultiStreamScheduler scheduler;
        auto schedule = scheduler.Schedule(graph, {config.num_streams});

        // 2. 初始化执行环境
        InitializeExecution(schedule, config);

        // 3. 启动异步执行
        for (const auto& stream_sched : schedule.stream_schedules) {
            ExecuteStreamAsync(stream_sched);
        }

        // 4. 等待完成
        WaitForCompletion();
    }

private:
    void ExecuteStreamAsync(const StreamSchedule& stream_sched) {
        auto stream = streams_[stream_sched.stream_id];

        // 等待依赖Stream完成
        for (int dep_stream_id : stream_sched.dependencies) {
            auto dep_event = stream_events_[dep_stream_id];
            aclrtStreamWaitEvent(stream, dep_event);
        }

        // 执行该Stream的所有节点
        for (auto node : stream_sched.nodes) {
            ExecuteNodeAsync(node, stream);
        }

        // 记录完成Event
        aclrtEvent event;
        aclrtCreateEvent(&event);
        aclrtRecordEvent(event, stream);
        stream_events_[stream_sched.stream_id] = event;
    }

    void ExecuteNodeAsync(NodePtr node, aclrtStream stream) {
        // 根据节点类型执行不同的操作
        auto op_type = node->GetType();

        if (op_type == "Conv2D") {
            ExecuteConv2DAsync(node, stream);
        } else if (op_type == "MatMul") {
            ExecuteMatMulAsync(node, stream);
        } else if (op_type == "Add") {
            ExecuteAddAsync(node, stream);
        } else {
            // 通用算子执行
            ExecuteOpAsync(node, stream);
        }
    }

    std::vector<aclrtStream> streams_;
    std::vector<aclrtEvent> stream_events_;
};

五、图编译与代码生成

5.1 编译流程

cpp 复制代码
class GraphCompiler {
public:
    struct CompileOptions {
        bool enable_optimization = true;
        bool enable_fusion = true;
        int opt_level = 3;  // 0-3
        std::string target_arch = "latest";
        bool generate_debug_info = false;
    };

    CompileResult Compile(GraphPtr graph, const CompileOptions& options) {
        CompileResult result;

        // 1. 图验证
        if (!ValidateGraph(graph)) {
            result.success = false;
            result.error_msg = "Graph validation failed";
            return result;
        }

        // 2. 图优化
        auto optimized_graph = graph;
        if (options.enable_optimization) {
            optimized_graph = OptimizeGraph(graph, options);
        }

        // 3. 算子选择
        auto kernel_selection = SelectKernels(optimized_graph, options.target_arch);

        // 4. 代码生成
        auto executable = GenerateCode(optimized_graph, kernel_selection, options);

        // 5. 二进制生成
        result.binary = GenerateBinary(executable);
        result.success = true;

        return result;
    }

private:
    GraphPtr OptimizeGraph(GraphPtr graph, const CompileOptions& options) {
        auto pass_manager = PassManager::Create();

        // 注册优化Pass
        if (options.enable_fusion) {
            pass_manager->RegisterPass(std::make_shared<ConvBNFusionPass>());
            pass_manager->RegisterPass(std::make_shared<MatMulAddFusionPass>());
        }

        pass_manager->RegisterPass(std::make_shared<ConstantFoldingPass>());
        pass_manager->RegisterPass(std::make_shared<MemoryReusePass>());
        pass_manager->RegisterPass(std::make_shared<DeadCodeEliminationPass>());

        // 执行优化
        auto result = pass_manager->Run(graph);
        return result.optimized_graph;
    }

    KernelSelection SelectKernels(GraphPtr graph, const std::string& arch) {
        KernelSelection selection;

        auto nodes = graph->GetNodes();
        for (auto node : nodes) {
            auto kernel = SelectBestKernel(node, arch);
            selection[node->GetId()] = kernel;
        }

        return selection;
    }

    KernelInfo SelectBestKernel(NodePtr node, const std::string& arch) {
        // 查询所有可用Kernel
        auto available_kernels = QueryAvailableKernels(node->GetType(), arch);

        // 根据性能指标选择最佳Kernel
        KernelInfo best_kernel;
        float best_score = -1.0f;

        for (const auto& kernel : available_kernels) {
            float score = EvaluateKernel(kernel, node);
            if (score > best_score) {
                best_score = score;
                best_kernel = kernel;
            }
        }

        return best_kernel;
    }

    ExecutableGraph GenerateCode(GraphPtr graph,
                                const KernelSelection& selection,
                                const CompileOptions& options) {
        ExecutableGraph exec_graph;

        // 为每个节点生成执行代码
        auto nodes = graph->GetNodes();
        for (auto node : nodes) {
            auto kernel = selection.at(node->GetId());
            auto exec_node = GenerateExecutableNode(node, kernel);
            exec_graph.AddNode(exec_node);
        }

        // 生成执行计划
        auto exec_plan = GenerateExecutionPlan(graph, selection);
        exec_graph.SetExecutionPlan(exec_plan);

        return exec_graph;
    }
};

5.2 可执行图

cpp 复制代码
class ExecutableGraph {
public:
    struct ExecutableNode {
        std::string name;
        std::string kernel_name;
        std::vector<void*> input_buffers;
        std::vector<void*> output_buffers;
        std::map<std::string, std::any> attributes;
    };

    void Execute() {
        // 按照执行计划执行
        for (const auto& node : execution_plan_) {
            ExecuteNode(node);
        }
    }

    void ExecuteAsync(aclrtStream stream) {
        for (const auto& node : execution_plan_) {
            ExecuteNodeAsync(node, stream);
        }
    }

private:
    void ExecuteNode(const ExecutableNode& node) {
        // 查找Kernel函数
        auto kernel_func = GetKernelFunction(node.kernel_name);

        // 准备参数
        std::vector<void*> args;
        for (auto buf : node.input_buffers) args.push_back(buf);
        for (auto buf : node.output_buffers) args.push_back(buf);

        // 调用Kernel
        kernel_func(args.data(), args.size());
    }

    void ExecuteNodeAsync(const ExecutableNode& node, aclrtStream stream) {
        // 异步执行Kernel
        auto kernel_func = GetKernelFunction(node.kernel_name);

        std::vector<void*> args;
        for (auto buf : node.input_buffers) args.push_back(buf);
        for (auto buf : node.output_buffers) args.push_back(buf);

        kernel_func(args.data(), args.size(), stream);
    }

    std::vector<ExecutableNode> nodes_;
    std::vector<ExecutableNode> execution_plan_;
};

六、性能分析与调试

6.1 性能分析工具

cpp 复制代码
class GraphProfiler {
public:
    void ProfileGraph(GraphPtr graph) {
        // 1. 收集原始性能数据
        auto raw_data = CollectPerformanceData(graph);

        // 2. 分析性能瓶颈
        auto bottlenecks = IdentifyBottlenecks(raw_data);

        // 3. 生成优化建议
        auto suggestions = GenerateOptimizationSuggestions(bottlenecks);

        // 4. 输出分析报告
        PrintProfileReport(raw_data, bottlenecks, suggestions);
    }

private:
    PerformanceData CollectPerformanceData(GraphPtr graph) {
        PerformanceData data;

        // 执行图并收集每个节点的执行时间
        auto nodes = graph->GetNodes();
        for (auto node : nodes) {
            auto node_stats = ProfileNode(node);
            data.node_stats[node->GetId()] = node_stats;
        }

        // 收集整体性能指标
        data.total_time = CalculateTotalTime(data);
        data.memory_usage = CalculateMemoryUsage(graph);

        return data;
    }

    NodePerformanceStats ProfileNode(NodePtr node) {
        NodePerformanceStats stats;

        // 多次执行取平均
        const int iterations = 100;
        std::vector<float> times;

        for (int i = 0; i < iterations; ++i) {
            auto start = std::chrono::high_resolution_clock::now();
            ExecuteNode(node);
            auto end = std::chrono::high_resolution_clock::now();

            float time_us = std::chrono::duration<float, std::micro>(end - start).count();
            times.push_back(time_us);
        }

        // 计算统计数据
        stats.avg_time = std::accumulate(times.begin(), times.end(), 0.0f) / iterations;
        stats.min_time = *std::min_element(times.begin(), times.end());
        stats.max_time = *std::max_element(times.begin(), times.end());

        float variance = 0.0f;
        for (auto t : times) {
            variance += (t - stats.avg_time) * (t - stats.avg_time);
        }
        stats.std_dev = std::sqrt(variance / iterations);

        return stats;
    }

    std::vector<BottleneckInfo> IdentifyBottlenecks(const PerformanceData& data) {
        std::vector<BottleneckInfo> bottlenecks;

        float total_time = data.total_time;
        for (const auto& [node_id, stats] : data.node_stats) {
            float time_ratio = stats.avg_time / total_time;

            if (time_ratio > 0.1f) {  // 超过10%总时间
                BottleneckInfo info;
                info.node_id = node_id;
                info.time_ratio = time_ratio;
                info.suggestion = GenerateBottleneckSuggestion(stats);
                bottlenecks.push_back(info);
            }
        }

        // 按时间占比排序
        std::sort(bottlenecks.begin(), bottlenecks.end(),
                 [](const BottleneckInfo& a, const BottleneckInfo& b) {
                     return a.time_ratio > b.time_ratio;
                 });

        return bottlenecks;
    }

    void PrintProfileReport(const PerformanceData& data,
                           const std::vector<BottleneckInfo>& bottlenecks,
                           const std::vector<OptimizationSuggestion>& suggestions) {
        std::cout << "=== Graph Performance Profile Report ===" << std::endl;
        std::cout << "Total execution time: " << data.total_time << " us" << std::endl;
        std::cout << "Memory usage: " << data.memory_usage / (1024 * 1024) << " MB" << std::endl;

        std::cout << "\n=== Top Bottlenecks ===" << std::endl;
        for (size_t i = 0; i < std::min(bottlenecks.size(), size_t(5)); ++i) {
            const auto& b = bottlenecks[i];
            std::cout << i + 1 << ". Node " << b.node_id
                      << " (" << b.time_ratio * 100 << "% time)" << std::endl;
            std::cout << "   " << b.suggestion << std::endl;
        }

        std::cout << "\n=== Optimization Suggestions ===" << std::endl;
        for (const auto& s : suggestions) {
            std::cout << "- " << s.description << std::endl;
            std::cout << "  Expected speedup: " << s.expected_speedup << "x" << std::endl;
        }
    }
};

七、总结

本文全面介绍了CANN GE图引擎的架构设计和优化技术,涵盖了:

  1. 图构建:从零构建计算图、从ONNX导入模型
  2. 图优化:算子融合、内存优化、常量折叠
  3. 并行调度:多流并行、流水线执行
  4. 代码生成:Kernel选择、可执行图生成
  5. 性能分析:瓶颈识别、优化建议

通过合理应用GE的优化技术,开发者可以显著提升模型执行效率,实现生产级的高性能推理系统。

相关链接:

相关推荐
L、2185 小时前
深入理解CANN:面向AI加速的异构计算架构详解
人工智能·架构
chaser&upper5 小时前
预见未来:在 AtomGit 解码 CANN ops-nn 的投机采样加速
人工智能·深度学习·神经网络
松☆5 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
结局无敌5 小时前
深度探究cann仓库下的infra:AI计算的底层基础设施底座
人工智能
m0_466525295 小时前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
慢半拍iii5 小时前
从零搭建CNN:如何高效调用ops-nn算子库
人工智能·神经网络·ai·cnn·cann
机器懒得学习5 小时前
智能股票分析系统
python·深度学习·金融
晟诺数字人5 小时前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
蛋王派5 小时前
DeepSeek-OCR-v2 模型解析和部署应用
人工智能·ocr