引言
在现代深度学习框架中,计算图是表示和优化神经网络计算的核心抽象。计算图将复杂的神经网络分解为基本计算单元(算子)和数据流动(张量),通过图级别的优化实现显著的性能提升。
GE(Graph Engine)是CANN生态系统的图编译和执行引擎,负责将高层框架(如TensorFlow、PyTorch)定义的计算图转换为异构硬件上可执行的高效代码。本文将深入解析GE的核心架构、编译流程和优化技术。
一、GE图编译器概述
1.1 设计目标
GE作为连接深度学习框架和底层硬件的桥梁,主要设计目标包括:
- 框架无关:支持多种主流深度学习框架
- 硬件优化:针对异构计算平台优化图执行
- 性能极致:通过图级别优化提升计算效率
- 灵活扩展:支持自定义算子和优化策略
1.2 核心功能模块
| 模块 | 功能 | 技术要点 |
|---|---|---|
| 图构建 | 解析原始计算图 | IR表示、算子注册 |
| 图优化 | 图级别变换 | 算子融合、常量折叠 |
| 内存规划 | 张量内存分配 | 内存复用、生命周期分析 |
| 代码生成 | 硬件代码生成 | 核函数生成、启动配置 |
| 图执行 | 运行时执行引擎 | 流水线调度、异步执行 |
1.3 计算图表示
GE使用中间表示(IR)来表示计算图:
Graph:
- Nodes (算子节点)
- Data: Conv2D, BiasAdd, ReLU, ...
- Control: If, While, For, ...
- Edges (数据边)
- Tensor: 多维数组
- Attributes (属性)
- 算子参数、配置信息
二、GE核心架构详解
2.1 图IR(中间表示)定义
cpp
#include "ge_ir.h"
#include <string>
#include <vector>
#include <unordered_map>
#include <memory>
namespace ge {
// 基础数据类型
enum class DataType {
DT_FLOAT = 0,
DT_FLOAT16 = 1,
DT_INT8 = 2,
DT_INT16 = 3,
DT_INT32 = 4,
DT_INT64 = 5,
DT_UINT8 = 6,
DT_UINT16 = 7,
DT_UINT32 = 8,
DT_BOOL = 9,
DT_DOUBLE = 10
};
// 张量形状
class TensorShape {
public:
TensorShape() = default;
explicit TensorShape(const std::vector<int64_t>& dims) : dims_(dims) {}
void add_dim(int64_t dim) { dims_.push_back(dim); }
int64_t dim_size(int index) const { return dims_[index]; }
int64_t num_dims() const { return dims_.size(); }
int64_t num_elements() const {
int64_t total = 1;
for (auto dim : dims_) total *= dim;
return total;
}
const std::vector<int64_t>& dims() const { return dims_; }
bool unknown_rank() const { return dims_.empty(); }
bool has_unknown_dim() const {
for (auto dim : dims_) {
if (dim == -1) return true;
}
return false;
}
private:
std::vector<int64_t> dims_;
};
// 张量描述
class TensorDesc {
public:
TensorDesc() = default;
TensorDesc(const TensorShape& shape, DataType dtype)
: shape_(shape), dtype_(dtype) {}
void set_shape(const TensorShape& shape) { shape_ = shape; }
const TensorShape& shape() const { return shape_; }
void set_data_type(DataType dtype) { dtype_ = dtype; }
DataType data_type() const { return dtype_; }
void set_format(const std::string& format) { format_ = format; }
const std::string& format() const { return format_; }
void set_layout(const std::string& layout) { layout_ = layout; }
const std::string& layout() const { return layout_; }
private:
TensorShape shape_;
DataType dtype_ = DataType::DT_FLOAT;
std::string format_ = "NCHW"; // NHWC, NCHW, etc.
std::string layout_ = "Any"; // 特定布局优化
};
// 属性值(支持多种类型)
class AttrValue {
public:
enum class Type {
INT,
FLOAT,
STRING,
BOOL,
TENSOR,
INT_LIST,
FLOAT_LIST,
STRING_LIST,
TENSOR_LIST
};
AttrValue() : type_(Type::INT) {}
static AttrValue create_int(int64_t value) {
AttrValue attr;
attr.type_ = Type::INT;
attr.int_value_ = value;
return attr;
}
static AttrValue create_float(float value) {
AttrValue attr;
attr.type_ = Type::FLOAT;
attr.float_value_ = value;
return attr;
}
static AttrValue create_string(const std::string& value) {
AttrValue attr;
attr.type_ = Type::STRING;
attr.string_value_ = value;
return attr;
}
static AttrValue create_bool(bool value) {
AttrValue attr;
attr.type_ = Type::BOOL;
attr.bool_value_ = value;
return attr;
}
static AttrValue create_int_list(const std::vector<int64_t>& value) {
AttrValue attr;
attr.type_ = Type::INT_LIST;
attr.int_list_value_ = value;
return attr;
}
Type type() const { return type_; }
int64_t int_value() const { return int_value_; }
float float_value() const { return float_value_; }
const std::string& string_value() const { return string_value_; }
bool bool_value() const { return bool_value_; }
const std::vector<int64_t>& int_list_value() const { return int_list_value_; }
private:
Type type_;
int64_t int_value_ = 0;
float float_value_ = 0.0f;
std::string string_value_;
bool bool_value_ = false;
std::vector<int64_t> int_list_value_;
};
// 算子节点
class Node {
public:
Node(const std::string& name, const std::string& type)
: name_(name), type_(type) {}
const std::string& name() const { return name_; }
const std::string& type() const { return type_; }
// 输入输出
void add_input(Node* node, int out_index) {
inputs_.push_back({node, out_index});
}
void add_output(const TensorDesc& desc) {
outputs_.push_back(desc);
}
const std::vector<std::pair<Node*, int>>& inputs() const { return inputs_; }
const std::vector<TensorDesc>& outputs() const { return outputs_; }
// 属性操作
void set_attr(const std::string& key, const AttrValue& value) {
attrs_[key] = value;
}
bool has_attr(const std::string& key) const {
return attrs_.find(key) != attrs_.end();
}
const AttrValue& get_attr(const std::string& key) const {
static AttrValue default_attr;
auto it = attrs_.find(key);
return it != attrs_.end() ? it->second : default_attr;
}
// 设备信息
void set_device(const std::string& device) { device_ = device; }
const std::string& device() const { return device_; }
private:
std::string name_;
std::string type_; // 算子类型:Conv2D, MatMul, etc.
std::vector<std::pair<Node*, int>> inputs_; // (节点, 输出索引)
std::vector<TensorDesc> outputs_;
std::unordered_map<std::string, AttrValue> attrs_;
std::string device_ = "default";
};
// 计算图
class Graph {
public:
Graph() = default;
explicit Graph(const std::string& name) : name_(name) {}
const std::string& name() const { return name_; }
// 节点操作
Node* add_node(const std::string& name, const std::string& type) {
nodes_.push_back(std::make_unique<Node>(name, type));
return nodes_.back().get();
}
Node* find_node(const std::string& name) const {
for (const auto& node : nodes_) {
if (node->name() == name) {
return node.get();
}
}
return nullptr;
}
const std::vector<std::unique_ptr<Node>>& nodes() const { return nodes_; }
// 输入输出
void add_input(Node* node, int index) {
inputs_.push_back({node, index});
}
void add_output(Node* node, int index) {
outputs_.push_back({node, index});
}
const std::vector<std::pair<Node*, int>>& inputs() const { return inputs_; }
const std::vector<std::pair<Node*, int>>& outputs() const { return outputs_; }
// 图分析
void topological_sort(std::vector<Node*>& sorted_nodes) const {
std::unordered_map<Node*, int> in_degree;
std::vector<Node*> sources;
// 计算入度
for (const auto& node : nodes_) {
in_degree[node.get()] = node->inputs().size();
if (node->inputs().empty()) {
sources.push_back(node.get());
}
}
// 拓扑排序
while (!sources.empty()) {
Node* node = sources.back();
sources.pop_back();
sorted_nodes.push_back(node);
// 找到所有使用此节点输出的节点
for (const auto& other_node : nodes_) {
for (const auto& input : other_node->inputs()) {
if (input.first == node) {
in_degree[other_node.get()]--;
if (in_degree[other_node.get()] == 0) {
sources.push_back(other_node.get());
}
}
}
}
}
}
// 图验证
bool validate() const {
// 检查循环引用
std::unordered_set<Node*> visited;
std::unordered_set<Node*> rec_stack;
for (const auto& node : nodes_) {
if (has_cycle(node.get(), visited, rec_stack)) {
return false;
}
}
// 检查输入输出连接
for (const auto& node : nodes_) {
for (const auto& input : node->inputs()) {
if (input.first == nullptr) {
return false;
}
}
}
return true;
}
private:
std::string name_;
std::vector<std::unique_ptr<Node>> nodes_;
std::vector<std::pair<Node*, int>> inputs_; // 图输入
std::vector<std::pair<Node*, int>> outputs_; // 图输出
bool has_cycle(Node* node,
std::unordered_set<Node*>& visited,
std::unordered_set<Node*>& rec_stack) const {
if (rec_stack.count(node)) return true;
if (visited.count(node)) return false;
visited.insert(node);
rec_stack.insert(node);
for (const auto& input : node->inputs()) {
if (has_cycle(input.first, visited, rec_stack)) {
return true;
}
}
rec_stack.erase(node);
return false;
}
};
} // namespace ge
2.2 图优化Pass
cpp
#include "ge_optimizer.h"
namespace ge {
// 优化Pass基类
class GraphOptimizationPass {
public:
virtual ~GraphOptimizationPass() = default;
virtual bool run(Graph* graph) = 0;
virtual const char* name() const = 0;
};
// 常量折叠
class ConstantFoldingPass : public GraphOptimizationPass {
public:
bool run(Graph* graph) override {
bool changed = false;
std::vector<Node*> to_remove;
for (const auto& node : graph->nodes()) {
if (is_constant_op(node->type())) {
// 尝试计算常量表达式的值
auto result = evaluate_constant_expression(node);
if (result.has_value()) {
// 创建常量节点替换原表达式
auto const_node = create_constant_node(
graph, node->name() + "_folded", result.value()
);
// 替换所有使用此节点的边
replace_uses_of_with(node, const_node);
to_remove.push_back(node.get());
changed = true;
}
}
}
// 移除已折叠的节点
for (auto* node : to_remove) {
graph->remove_node(node);
}
return changed;
}
const char* name() const override { return "ConstantFolding"; }
private:
bool is_constant_op(const std::string& type) {
static const std::unordered_set<std::string> constant_ops = {
"Add", "Sub", "Mul", "Div", "Pow",
"Sin", "Cos", "Exp", "Log",
"Greater", "Less", "Equal"
};
return constant_ops.count(type) > 0;
}
std::optional<TensorDesc> evaluate_constant_expression(Node* node) {
// 检查所有输入是否都是常量
for (const auto& input : node->inputs()) {
if (input.first->type() != "Const") {
return std::nullopt;
}
}
// 执行计算(简化实现)
TensorDesc result;
// ... 实际计算逻辑
return result;
}
Node* create_constant_node(Graph* graph, const std::string& name,
const TensorDesc& value) {
auto* node = graph->add_node(name, "Const");
node->add_output(value);
return node;
}
void replace_uses_of_with(Node* old_node, Node* new_node) {
// 替换所有使用old_node的边
// 实现略
}
};
// 死代码消除
class DeadCodeEliminationPass : public GraphOptimizationPass {
public:
bool run(Graph* graph) override {
std::unordered_set<Node*> live;
// 标记所有可达节点
for (const auto& output : graph->outputs()) {
mark_reachable(output.first, live);
}
// 移除不可达节点
bool changed = false;
std::vector<Node*> to_remove;
for (const auto& node : graph->nodes()) {
if (!live.count(node.get())) {
to_remove.push_back(node.get());
changed = true;
}
}
for (auto* node : to_remove) {
graph->remove_node(node);
}
return changed;
}
const char* name() const override { return "DeadCodeElimination"; }
private:
void mark_reachable(Node* node, std::unordered_set<Node*>& live) {
if (live.count(node)) return;
live.insert(node);
for (const auto& input : node->inputs()) {
mark_reachable(input.first, live);
}
}
};
// 算子融合
class OperatorFusionPass : public GraphOptimizationPass {
public:
bool run(Graph* graph) override {
bool changed = false;
// Conv2D + BiasAdd + ReLU 融合
changed |= fuse_conv_bias_relu(graph);
// MatMul + Add 融合
changed |= fuse_matmul_add(graph);
// 其他融合模式
// ...
return changed;
}
const char* name() const override { return "OperatorFusion"; }
private:
bool fuse_conv_bias_relu(Graph* graph) {
std::vector<Node*> to_remove;
bool changed = false;
for (const auto& node : graph->nodes()) {
// 查找模式: Conv2D -> BiasAdd -> ReLU
if (node->type() == "Relu") {
auto* bias_add = get_single_input_node(node);
if (bias_add && bias_add->type() == "BiasAdd") {
auto* conv2d = get_single_input_node(bias_add);
if (conv2d && conv2d->type() == "Conv2D") {
// 创建融合算子
auto* fused = create_fused_conv_bias_relu(
graph, conv2d, bias_add, node
);
// 替换原图
replace_node_with(graph, node, fused);
to_remove.push_back(conv2d);
to_remove.push_back(bias_add);
to_remove.push_back(node);
changed = true;
}
}
}
}
for (auto* node : to_remove) {
graph->remove_node(node);
}
return changed;
}
Node* get_single_input_node(Node* node) {
if (node->inputs().size() == 1) {
return node->inputs()[0].first;
}
return nullptr;
}
Node* create_fused_conv_bias_relu(Graph* graph, Node* conv,
Node* bias, Node* relu) {
auto* fused = graph->add_node(
conv->name() + "_fused",
"FusedConvBiasAddRelu"
);
// 复制Conv的属性
for (const auto& attr : conv->attrs()) {
fused->set_attr(attr.first, attr.second);
}
// 设置偏置
fused->set_attr("bias", bias->get_attr("bias"));
// 设置输入输出
fused->add_input(conv->inputs()[0].first, conv->inputs()[0].second);
fused->add_input(conv->inputs()[1].first, conv->inputs()[1].second);
fused->add_output(conv->outputs()[0]);
return fused;
}
void replace_node_with(Graph* graph, Node* old_node, Node* new_node) {
// 替换所有使用old_node的边
// 实现略
}
bool fuse_matmul_add(Graph* graph) {
// MatMul + BiasAdd融合实现
// 类似于上面的Conv融合
return false;
}
};
// 公共子表达式消除
class CommonSubexpressionEliminationPass : public GraphOptimizationPass {
public:
bool run(Graph* graph) override {
// 构建表达式哈希
std::unordered_map<size_t, std::vector<Node*>> expr_map;
for (const auto& node : graph->nodes()) {
size_t hash = compute_expression_hash(node);
expr_map[hash].push_back(node.get());
}
bool changed = false;
std::vector<Node*> to_remove;
// 查找可合并的表达式
for (const auto& [hash, nodes] : expr_map) {
if (nodes.size() > 1) {
// 找到候选,进一步验证
for (size_t i = 1; i < nodes.size(); ++i) {
if (are_equivalent(nodes[0], nodes[i])) {
// 合并到nodes[0]
replace_uses_of_with(nodes[i], nodes[0]);
to_remove.push_back(nodes[i]);
changed = true;
}
}
}
}
for (auto* node : to_remove) {
graph->remove_node(node);
}
return changed;
}
const char* name() const override { return "CommonSubexpressionElimination"; }
private:
size_t compute_expression_hash(Node* node) {
size_t hash = std::hash<std::string>{}(node->type());
for (const auto& input : node->inputs()) {
hash ^= std::hash<Node*>{}(input.first);
hash ^= std::hash<int>{}(input.second);
}
for (const auto& attr : node->attrs()) {
hash ^= std::hash<std::string>{}(attr.first);
// 哈希属性值(简化)
}
return hash;
}
bool are_equivalent(Node* a, Node* b) {
if (a->type() != b->type()) return false;
if (a->inputs().size() != b->inputs().size()) return false;
for (size_t i = 0; i < a->inputs().size(); ++i) {
if (a->inputs()[i].first != b->inputs()[i].first) return false;
if (a->inputs()[i].second != b->inputs()[i].second) return false;
}
return true;
}
void replace_uses_of_with(Node* old_node, Node* new_node) {
// 实现略
}
};
// 优化Pass管理器
class OptimizationPassManager {
public:
void add_pass(std::unique_ptr<GraphOptimizationPass> pass) {
passes_.push_back(std::move(pass));
}
bool run(Graph* graph) {
bool changed = false;
int iteration = 0;
const int max_iterations = 10;
while (iteration < max_iterations) {
bool iter_changed = false;
for (auto& pass : passes_) {
bool pass_changed = pass->run(graph);
if (pass_changed) {
iter_changed = true;
}
}
if (!iter_changed) break;
changed = true;
iteration++;
}
return changed;
}
private:
std::vector<std::unique_ptr<GraphOptimizationPass>> passes_;
};
} // namespace ge
2.3 内存规划
cpp
#include "ge_memory_planner.h"
namespace ge {
// 张量生命周期分析
class TensorLifetimeAnalyzer {
public:
struct LiveInterval {
int start; // 最早定义点
int end; // 最后使用点
size_t size;
int tensor_id;
};
std::vector<LiveInterval> analyze_lifetimes(const Graph* graph) {
std::vector<LiveInterval> intervals;
std::unordered_map<Node*, int> node_ids;
std::unordered_map<std::pair<Node*, int>, int> output_ids;
// 为节点分配ID
int id = 0;
for (const auto& node : graph->nodes()) {
node_ids[node.get()] = id++;
}
// 分析每个张量的生命周期
id = 0;
for (const auto& node : graph->nodes()) {
int def_point = node_ids[node.get()];
for (size_t i = 0; i < node->outputs().size(); ++i) {
LiveInterval interval;
interval.start = def_point;
interval.end = def_point;
interval.size = compute_size(node->outputs()[i]);
interval.tensor_id = id++;
// 找到最后使用点
for (const auto& user : graph->nodes()) {
for (const auto& input : user->inputs()) {
if (input.first == node.get() &&
static_cast<size_t>(input.second) == i) {
interval.end = std::max(
interval.end, node_ids[user.get()]
);
}
}
}
intervals.push_back(interval);
}
}
return intervals;
}
private:
size_t compute_size(const TensorDesc& desc) {
size_t element_size = 0;
switch (desc.data_type()) {
case DataType::DT_FLOAT:
case DataType::DT_INT32:
element_size = 4;
break;
case DataType::DT_FLOAT16:
case DataType::DT_INT16:
element_size = 2;
break;
case DataType::DT_INT8:
case DataType::DT_UINT8:
case DataType::DT_BOOL:
element_size = 1;
break;
case DataType::DT_INT64:
case DataType::DT_DOUBLE:
element_size = 8;
break;
}
return desc.shape().num_elements() * element_size;
}
};
// 内存分配器
class MemoryAllocator {
public:
struct MemoryBlock {
size_t offset;
size_t size;
int tensor_id;
};
std::vector<MemoryBlock> allocate(const std::vector<LiveInterval>& intervals) {
std::vector<MemoryBlock> allocations;
std::vector<std::pair<size_t, size_t>> free_list; // (offset, size)
// 按开始时间排序
auto sorted = intervals;
std::sort(sorted.begin(), sorted.end(),
[](const auto& a, const auto& b) {
return a.start < b.start;
});
size_t max_offset = 0;
for (const auto& interval : sorted) {
// 尝试从空闲列表分配
bool allocated = false;
for (auto it = free_list.begin(); it != free_list.end(); ++it) {
if (it->second >= interval.size) {
// 找到合适的块
MemoryBlock block;
block.offset = it->first;
block.size = interval.size;
block.tensor_id = interval.tensor_id;
allocations.push_back(block);
// 更新空闲列表
if (it->second > interval.size) {
it->first += interval.size;
it->second -= interval.size;
} else {
free_list.erase(it);
}
allocated = true;
break;
}
}
if (!allocated) {
// 分配新空间
MemoryBlock block;
block.offset = max_offset;
block.size = interval.size;
block.tensor_id = interval.tensor_id;
allocations.push_back(block);
max_offset += interval.size;
}
// 回收过期的张量
for (size_t i = 0; i < allocations.size(); ++i) {
if (sorted[allocations[i].tensor_id].end < interval.start) {
// 加入空闲列表
free_list.push_back({
allocations[i].offset,
allocations[i].size
});
}
}
}
return allocations;
}
};
// 内存规划器
class MemoryPlanner {
public:
struct MemoryPlan {
std::unordered_map<int, size_t> tensor_offsets; // tensor_id -> offset
size_t total_size;
};
MemoryPlan plan(const Graph* graph) {
// 分析生命周期
TensorLifetimeAnalyzer analyzer;
auto intervals = analyzer.analyze_lifetimes(graph);
// 分配内存
MemoryAllocator allocator;
auto allocations = allocator.allocate(intervals);
// 构建规划
MemoryPlan plan;
plan.total_size = 0;
for (const auto& alloc : allocations) {
plan.tensor_offsets[alloc.tensor_id] = alloc.offset;
plan.total_size = std::max(
plan.total_size,
alloc.offset + alloc.size
);
}
return plan;
}
};
} // namespace ge
2.4 代码生成
cpp
#include "ge_code_generator.h"
namespace ge {
// 代码生成器基类
class CodeGenerator {
public:
virtual ~CodeGenerator() = default;
virtual std::string generate(const Graph* graph,
const MemoryPlan& memory_plan) = 0;
};
// 异构计算代码生成器
class HeteroComputeCodeGenerator : public CodeGenerator {
public:
std::string generate(const Graph* graph,
const MemoryPlan& memory_plan) override {
CodeEmitter emitter;
// 生成头文件
emit_headers(emitter);
// 生成全局变量
emit_globals(emitter, memory_plan);
// 生成核函数
emit_kernels(emitter, graph, memory_plan);
// 生成主机端代码
emit_host_code(emitter, graph, memory_plan);
return emitter.str();
}
private:
void emit_headers(CodeEmitter& emitter) {
emitter.emit("#include <hcl_api.h>\n");
emitter.emit("#include <hcl_runtime.h>\n\n");
}
void emit_globals(CodeEmitter& emitter, const MemoryPlan& memory_plan) {
emitter.emit("// 全局内存池\n");
emitter.emit("static void* g_memory_pool = nullptr;\n");
emitter.emit("static const size_t g_pool_size = ");
emitter.emit(std::to_string(memory_plan.total_size));
emitter.emit(";\n\n");
}
void emit_kernels(CodeEmitter& emitter, const Graph* graph,
const MemoryPlan& memory_plan) {
for (const auto& node : graph->nodes()) {
emit_single_kernel(emitter, node, memory_plan);
}
}
void emit_single_kernel(CodeEmitter& emitter,
const std::unique_ptr<Node>& node,
const MemoryPlan& memory_plan) {
// 生成核函数签名
emitter.emit("__global__ void ");
emitter.emit(node->name());
emitter.emit("_kernel(\n");
// 参数列表
std::vector<std::string> params;
for (size_t i = 0; i < node->inputs().size(); ++i) {
params.push_back("void* input_" + std::to_string(i));
}
for (size_t i = 0; i < node->outputs().size(); ++i) {
params.push_back("void* output_" + std::to_string(i));
}
for (size_t i = 0; i < params.size(); ++i) {
emitter.emit(" ");
emitter.emit(params[i]);
if (i < params.size() - 1) {
emitter.emit(",\n");
}
}
emitter.emit("\n) {\n");
// 生成核函数体
emit_kernel_body(emitter, node, memory_plan);
emitter.emit("}\n\n");
}
void emit_kernel_body(CodeEmitter& emitter,
const std::unique_ptr<Node>& node,
const MemoryPlan& memory_plan) {
std::string op_type = node->type();
if (op_type == "Conv2D") {
emit_conv2d_kernel(emitter, node, memory_plan);
} else if (op_type == "MatMul") {
emit_matmul_kernel(emitter, node, memory_plan);
} else if (op_type == "Add") {
emit_add_kernel(emitter, node, memory_plan);
} else {
emit_generic_kernel(emitter, node, memory_plan);
}
}
void emit_conv2d_kernel(CodeEmitter& emitter,
const std::unique_ptr<Node>& node,
const MemoryPlan& memory_plan) {
// 获取Conv2D属性
auto strides = node->get_attr("strides").int_list_value();
auto pads = node->get_attr("pads").int_list_value();
auto dilations = node->get_attr("dilations").int_list_value();
auto groups = node->get_attr("groups").int_value();
emitter.emit(" // Conv2D kernel\n");
emitter.emit(" int idx = blockIdx.x * blockDim.x + threadIdx.x;\n");
emitter.emit(" // ... Conv2D实现\n");
}
void emit_matmul_kernel(CodeEmitter& emitter,
const std::unique_ptr<Node>& node,
const MemoryPlan& memory_plan) {
emitter.emit(" // MatMul kernel\n");
emitter.emit(" int row = blockIdx.y * blockDim.y + threadIdx.y;\n");
emitter.emit(" int col = blockIdx.x * blockDim.x + threadIdx.x;\n");
emitter.emit(" // ... MatMul实现\n");
}
void emit_add_kernel(CodeEmitter& emitter,
const std::unique_ptr<Node>& node,
const MemoryPlan& memory_plan) {
emitter.emit(" // Element-wise Add kernel\n");
emitter.emit(" int idx = blockIdx.x * blockDim.x + threadIdx.x;\n");
emitter.emit(" float* a = (float*)input_0;\n");
emitter.emit(" float* b = (float*)input_1;\n");
emitter.emit(" float* c = (float*)output_0;\n");
emitter.emit(" c[idx] = a[idx] + b[idx];\n");
}
void emit_generic_kernel(CodeEmitter& emitter,
const std::unique_ptr<Node>& node,
const MemoryPlan& memory_plan) {
emitter.emit(" // Generic kernel for ");
emitter.emit(node->type());
emitter.emit("\n");
emitter.emit(" // TODO: implement\n");
}
void emit_host_code(CodeEmitter& emitter, const Graph* graph,
const MemoryPlan& memory_plan) {
emitter.emit("// 主机端执行函数\n");
emitter.emit("void execute_graph() {\n");
emitter.emit(" // 分配内存池\n");
emitter.emit(" hclMalloc(&g_memory_pool, g_pool_size);\n\n");
emitter.emit(" // 执行计算图\n");
std::vector<Node*> sorted_nodes;
graph->topological_sort(sorted_nodes);
for (Node* node : sorted_nodes) {
emit_kernel_launch(emitter, node, memory_plan);
}
emitter.emit("\n // 释放内存\n");
emitter.emit(" hclFree(g_memory_pool);\n");
emitter.emit("}\n");
}
void emit_kernel_launch(CodeEmitter& emitter, Node* node,
const MemoryPlan& memory_plan) {
emitter.emit(" // Launch: ");
emitter.emit(node->name());
emitter.emit("\n");
// 计算grid和block大小
auto grid_block = compute_launch_config(node);
emitter.emit(" ");
emitter.emit(node->name());
emitter.emit("_kernel<<<");
emitter.emit(std::to_string(grid_block.first));
emitter.emit(", ");
emitter.emit(std::to_string(grid_block.second));
emitter.emit(">>>(\n");
// 传递参数(基于内存规划)
for (size_t i = 0; i < node->inputs().size(); ++i) {
auto offset = get_tensor_offset(node->inputs()[i], memory_plan);
emitter.emit(" (void*)((char*)g_memory_pool + ");
emitter.emit(std::to_string(offset));
emitter.emit(")");
if (i < node->inputs().size() - 1 || !node->outputs().empty()) {
emitter.emit(",\n");
}
}
for (size_t i = 0; i < node->outputs().size(); ++i) {
auto offset = get_tensor_output_offset(node, i, memory_plan);
emitter.emit(" (void*)((char*)g_memory_pool + ");
emitter.emit(std::to_string(offset));
emitter.emit(")");
if (i < node->outputs().size() - 1) {
emitter.emit(",\n");
}
}
emitter.emit("\n );\n");
}
std::pair<int, int> compute_launch_config(Node* node) {
// 根据输出形状和硬件特性计算grid/block大小
if (node->outputs().empty()) {
return {1, 1};
}
const auto& shape = node->outputs()[0].shape();
int total_elements = static_cast<int>(shape.num_elements());
// 简化:每个线程处理一个元素
int block_size = 256;
int grid_size = (total_elements + block_size - 1) / block_size;
return {grid_size, block_size};
}
size_t get_tensor_offset(const std::pair<Node*, int>& tensor,
const MemoryPlan& memory_plan) {
// 根据内存规划获取偏移
// 简化实现
return 0;
}
size_t get_tensor_output_offset(Node* node, int output_index,
const MemoryPlan& memory_plan) {
// 根据内存规划获取输出偏移
// 简化实现
return 0;
}
};
// 代码发射器
class CodeEmitter {
public:
void emit(const std::string& code) {
buffer_ += code;
}
std::string str() const {
return buffer_;
}
private:
std::string buffer_;
};
} // namespace ge
三、Python API
GE提供了友好的Python接口:
python
import ge
import numpy as np
# ===== 构建计算图 =====
def build_simple_graph():
# 创建图
graph = ge.Graph("my_graph")
# 创建占位符节点(输入)
input_ph = graph.add_placeholder("input",
shape=(1, 224, 224, 3),
dtype=ge.DataType.DT_FLOAT)
# 创建常量节点(权重)
weights = graph.add_constant("weights",
value=np.random.randn(3, 3, 3, 16).astype(np.float32))
# 创建算子节点
conv = graph.add_op("conv",
op_type="Conv2D",
inputs=[input_ph, weights],
attrs={"strides": [1, 1, 1, 1],
"pads": [0, 0, 0, 0],
"dilations": [1, 1, 1, 1]})
bias = graph.add_constant("bias",
value=np.zeros(16).astype(np.float32))
bias_add = graph.add_op("bias_add",
op_type="BiasAdd",
inputs=[conv, bias])
relu = graph.add_op("relu",
op_type="Relu",
inputs=[bias_add])
# 设置输出
graph.set_outputs([relu])
return graph
# ===== 图优化 =====
def optimize_graph(graph):
# 创建优化管理器
optimizer = ge.OptimizationPassManager()
# 添加优化Pass
optimizer.add_pass(ge.ConstantFoldingPass())
optimizer.add_pass(ge.DeadCodeEliminationPass())
optimizer.add_pass(ge.OperatorFusionPass())
optimizer.add_pass(ge.CommonSubexpressionEliminationPass())
# 运行优化
optimized_graph = optimizer.run(graph)
return optimized_graph
# ===== 内存规划 =====
def plan_memory(graph):
planner = ge.MemoryPlanner()
memory_plan = planner.plan(graph)
print(f"Total memory required: {memory_plan.total_size / 1024 / 1024:.2f} MB")
return memory_plan
# ===== 代码生成 =====
def generate_code(graph, memory_plan):
codegen = ge.HeteroComputeCodeGenerator()
code = codegen.generate(graph, memory_plan)
print("Generated code:")
print(code)
return code
# ===== 完整示例 =====
def complete_example():
# 1. 构建图
print("=== Building Graph ===")
graph = build_simple_graph()
print(f"Graph has {len(graph.nodes())} nodes")
# 2. 优化图
print("\n=== Optimizing Graph ===")
optimized_graph = optimize_graph(graph)
print(f"Optimized graph has {len(optimized_graph.nodes())} nodes")
# 3. 内存规划
print("\n=== Memory Planning ===")
memory_plan = plan_memory(optimized_graph)
# 4. 生成代码
print("\n=== Code Generation ===")
code = generate_code(optimized_graph, memory_plan)
# ===== 自定义算子 =====
def custom_operator_example():
graph = ge.Graph("custom_op_graph")
# 定义自定义算子
@ge.register_operator("MyCustomOp")
class MyCustomOp(ge.Operator):
def compute(self, inputs, attrs):
# 自定义计算逻辑
x = inputs[0]
return x * 2 + 1
# 使用自定义算子
input_ph = graph.add_placeholder("input", shape=(10,), dtype=ge.DataType.DT_FLOAT)
custom = graph.add_op("custom",
op_type="MyCustomOp",
inputs=[input_ph])
graph.set_outputs([custom])
return graph
# ===== 子图示例 =====
def subgraph_example():
# 主图
main_graph = ge.Graph("main_graph")
input_ph = main_graph.add_placeholder("input", shape=(10, 10))
# 创建子图(可重用)
subgraph = ge.Graph("dense_block")
sub_input = subgraph.add_placeholder("x", shape=(10, 10))
w1 = subgraph.add_constant("w1", value=np.random.randn(10, 10))
matmul1 = subgraph.add_op("matmul1", op_type="MatMul", inputs=[sub_input, w1])
relu1 = subgraph.add_op("relu1", op_type="Relu", inputs=[matmul1])
w2 = subgraph.add_constant("w2", value=np.random.randn(10, 10))
matmul2 = subgraph.add_op("matmul2", op_type="MatMul", inputs=[relu1, w2])
relu2 = subgraph.add_op("relu2", op_type="Relu", inputs=[matmul2])
subgraph.set_outputs([relu2])
# 在主图中调用子图
call = main_graph.add_call("dense_block_call", subgraph, inputs=[input_ph])
main_graph.set_outputs([call])
return main_graph
if __name__ == "__main__":
complete_example()
print("\n=== Custom Operator Example ===")
custom_graph = custom_operator_example()
print("\n=== Subgraph Example ===")
sub_graph = subgraph_example()
四、性能优化策略
4.1 常用优化技术
| 优化技术 | 效果 | 复杂度 |
|---|---|---|
| 算子融合 | 30-50% | 中 |
| 常量折叠 | 10-20% | 低 |
| 内存复用 | 20-40% | 高 |
| 循环展开 | 5-15% | 低 |
| 向量化 | 20-40% | 中 |
4.2 优化建议
- 优先使用算子融合:减少内存访问
- 启用内存规划:降低显存占用
- 使用量化:压缩模型大小
- 图级别优化:充分利用数据流信息
五、总结
GE作为CANN的图编译和执行引擎,提供了:
- 完整的编译流程:从图构建到代码生成
- 丰富的优化Pass:算子融合、常量折叠等
- 智能内存规划:生命周期分析和内存复用
- 灵活的代码生成:支持多种后端
通过GE,开发者可以高效地将深度学习模型部署到异构计算平台上。
相关链接
- CANN组织链接 : https://atomgit.com/cann
- GE仓库链接 : https://atomgit.com/cann/ge