Kabsch 算法

1、Kabsch 算法

Kabsch 算法是一种用 SVD 求解两组对应点之间最优旋转矩阵 R 的方法,使它们的均方误差最小。
它是 ICP、结构生物学、机器人学中最常用的刚体对齐算法。

2、应用场景

✔ 1. ICP(Point-to-Point)核心步骤

求 R、t 用来把源点云对齐到目标点云。

✔ 2. 蛋白质结构比对(Kabsch 最早来自生物化学)

对齐两段蛋白质链。

✔ 3. 机器人位姿估计(Hand-Eye, PnP 简化版)

从 A→B 的对应点求最优旋转。


3、问题模型

4、Kabsch 解决步骤(核心:SVD)

Step 1:去中心化(必须)

Step 2:构造协方差矩阵

Step 3:SVD 分解

Step 4:旋转矩阵

Step 5:平移

这就是 ICP 中的 R、t 更新

5、几何解释

⭐ 1. 去中心化 → 去掉平移,只剩形状

让两个点云绕中心对齐。

⭐ 2. H = Σ pᵢ qᵢᵀ → 统计它们方向上的相关性

反映两个点云的"共同指向"。

⭐ 3. SVD → 找到最接近正交矩阵的线性映射

SVD 会把矩阵分解成旋转 × 缩放 × 旋转。

⭐ 4. V Uᵀ → 去掉缩放,只留下旋转

所以它得到的是最优旋转。

这就是 最小二乘意义下点云最优刚体旋转

6、Kabsch 算法 MATLAB 完整实现

cpp 复制代码
function [R, t] = kabsch(P, Q)
    % 输入:P, Q (N×3), 按对应点排列
    % 输出:R (3×3), t (3×1)

    % 1. 去中心化
    p_bar = mean(P, 1);
    q_bar = mean(Q, 1);
    P0 = P - p_bar;
    Q0 = Q - q_bar;

    % 2. 协方差矩阵
    H = P0' * Q0;

    % 3. SVD
    [U, ~, V] = svd(H);

    % 4. 旋转
    R = V * U';
    if det(R) < 0
        disp('Reflection detected. Fixing...');
        V(:,3) = -V(:,3);
        R = V * U';
    end

    % 5. 平移
    t = q_bar' - R * p_bar';
end
cpp 复制代码
      两组点云
   P ● ● ● ● ●
   Q ○ ○ ○ ○ ○

Step1 去中心化
Step2 构造 H
Step3 SVD → U, Σ, V
Step4 R = V Uᵀ
Step5 t = q̄ - R p̄

完成最优刚体对齐

7、在 ICP 中的作用

ICP 的一轮迭代流程:

  1. 建立最近点对应

  2. 使用 Kabsch 求解 R, t

  3. 更新点云

  4. 收敛

👉 Kabsch 是 ICP 的核心数学工具。

相关推荐
寻寻觅觅☆9 小时前
东华OJ-基础题-106-大整数相加(C++)
开发语言·c++·算法
偷吃的耗子10 小时前
【CNN算法理解】:三、AlexNet 训练模块(附代码)
深度学习·算法·cnn
化学在逃硬闯CS11 小时前
Leetcode1382. 将二叉搜索树变平衡
数据结构·算法
ceclar12311 小时前
C++使用format
开发语言·c++·算法
Gofarlic_OMS11 小时前
科学计算领域MATLAB许可证管理工具对比推荐
运维·开发语言·算法·matlab·自动化
夏鹏今天学习了吗12 小时前
【LeetCode热题100(100/100)】数据流的中位数
算法·leetcode·职场和发展
忙什么果12 小时前
上位机、下位机、FPGA、算法放在哪层合适?
算法·fpga开发
董董灿是个攻城狮12 小时前
AI 视觉连载4:YUV 的图像表示
算法
ArturiaZ13 小时前
【day24】
c++·算法·图论
大江东去浪淘尽千古风流人物14 小时前
【SLAM】Hydra-Foundations 层次化空间感知:机器人如何像人类一样理解3D环境
深度学习·算法·3d·机器人·概率论·slam