explaining and harnessing adversarial examples

Goodfellow 大神 2015年在 ICLR上的 神作。开始拜读

1、对抗样本

对抗样本是指,从人眼来看,与哪些模型正确估计的模型相差不大,但是模型却估计错误,甚至错的很离谱,前沿的算法模型,不管是基于机器学习,还是基于神经网络的,都很容易在对抗样本上估计错误。

在实际中训练神经网络时,确实出现一个怪象,就是,往往在测试集上性能特别好,但是在实际应用中,性能比较低。有一种可能是,模型没有学习到真正的隐喻特征,所以在遇到数据分布中,出现概率很低的数据,识别性能很低。

2、FGSM的符号

输入样本是 xxx

对抗样本是 x^=x+η\hat{x} = x +\etax^=x+η

现在来对 η\etaη 进行定义和限制,输入的 xxx 受精度限制,应为输入图片的RGB都是8个字节的,因此最小的精度为 1/2551/2551/255,可以称这个精度为 eee,小于这个的精度的都不被识别。

那么,如果,η\etaη 中的每个维度都小于精度,即
∥η∥∞<e \|\eta\|_\infty < e∥η∥∞<e

插一个解释,这种是最大范数约束,即向量η\etaη中的绝对值最大的元素,不能超过 e。

接下来往下说,那对于 xxx 和 x^=x+η\hat{x} = x +\etax^=x+η 来说,我们期望模型的输出估计应该是一致的。

w⊤x^=w⊤x+w⊤η \mathbf{w}^{\top} \hat{x} = \mathbf{w}^{\top}x + \mathbf{w}^{\top} \etaw⊤x^=w⊤x+w⊤η

所以针对 正常的 xxx 来说,经过一层卷积之后,扰动 η\etaη 变成

w⊤η \mathbf{w}^{\top} \etaw⊤η

现在就是想让这种扰动最大化

w⊤η=max⁡∣ηi∣<e∑iwiηi \mathbf{w}^{\top} \eta = \max\limits_{|\eta_i|<e}\sum_{i}w_i \eta_iw⊤η=∣ηi∣<emaxi∑wiηi

首先,要求 w⊤η\mathbf{w}^{\top} \etaw⊤η 的最大值,可以把向量www和η\etaη每个维度对应相乘,那么要想整个数值最大,最基本的,应该是wiw_iwi和ηi\eta_iηi 二者同向,同向一定产生正值,反向一定产生负值,有负值存在的情况下,w⊤η\mathbf{w}^{\top} \etaw⊤η,一定不是最大值。所以
η=sign(w)\eta = sign(w)η=sign(w)

就很好理解了。

再次观察 w⊤η\mathbf{w}^{\top} \etaw⊤η,来估计下,整个变化有多大,假如 www 的维度为n,每个维度的平均大小为m , η\etaη 中每个维度的扰动都取最大值 e,那么w⊤η\mathbf{w}^{\top} \etaw⊤η之后,扰动可以增加 emnemnemn

背后的意思是,每个维度的扰动都很小,但是有n个维度,每个维度都在同方向加贡献,那扰动就会成倍的增加,Goodfellow 论文里的核心观点之一:

对抗样本不是模型太复杂,而是模型太"线性 + 高维"

一个简单的线性模型也有对抗样本,如果模型的输入维度非常高,

2、FGSM

η=ϵ sign⁡ ⁣(∇xJ(θ,x,y)) \eta = \epsilon \, \operatorname{sign}\!\left(\nabla_x J(\theta, x, y)\right) η=ϵsign(∇xJ(θ,x,y))

相关推荐
九.九6 小时前
ops-transformer:AI 处理器上的高性能 Transformer 算子库
人工智能·深度学习·transformer
春日见6 小时前
拉取与合并:如何让个人分支既包含你昨天的修改,也包含 develop 最新更新
大数据·人工智能·深度学习·elasticsearch·搜索引擎
恋猫de小郭6 小时前
AI 在提高你工作效率的同时,也一直在增加你的疲惫和焦虑
前端·人工智能·ai编程
deephub6 小时前
Agent Lightning:微软开源的框架无关 Agent 训练方案,LangChain/AutoGen 都能用
人工智能·microsoft·langchain·大语言模型·agent·强化学习
偷吃的耗子7 小时前
【CNN算法理解】:三、AlexNet 训练模块(附代码)
深度学习·算法·cnn
大模型RAG和Agent技术实践7 小时前
从零构建本地AI合同审查系统:架构设计与流式交互实战(完整源代码)
人工智能·交互·智能合同审核
老邋遢7 小时前
第三章-AI知识扫盲看这一篇就够了
人工智能
互联网江湖7 小时前
Seedance2.0炸场:长短视频们“修坝”十年,不如AI放水一天?
人工智能
PythonPioneer7 小时前
在AI技术迅猛发展的今天,传统职业该如何“踏浪前行”?
人工智能
冬奇Lab7 小时前
一天一个开源项目(第20篇):NanoBot - 轻量级AI Agent框架,极简高效的智能体构建工具
人工智能·开源·agent