超声无损检测阵列设计的MATLAB实现

一、阵列参数配置与建模
matlab 复制代码
%% 阵列参数设置
clear; clc; close all;

% 物理参数
c = 1540; % 声速 (m/s)
f0 = 5e6; % 中心频率 (Hz)
lambda = c / f0; % 波长
N = 16; % 阵元数量
d = 0.5*lambda; % 阵元间距 (半波长)
aperture = (N-1)*d; % 阵列孔径

% 探头几何参数
x = linspace(-aperture/2, aperture/2, N); % 阵元位置 (m)
y = zeros(1, N); % 单线阵假设

% 声场参数
depth = 0.1; % 检测深度 (m)
focus_depth = 0.05; % 聚焦深度 (m)

二、信号生成与回波模拟
matlab 复制代码
%% 激励信号生成
t = 0:1/f0:1e-6; % 时间轴 (1μs脉宽)
pulse = sin(2*pi*f0*t); % 正弦脉冲

%% 回波信号模拟
num_echoes = 3; % 模拟多次反射
echoes = cell(1, num_echoes);
for i = 1:num_echoes
    % 随机散射体位置 (x,y,z)
    scatter_pos = [rand()*0.1, rand()*0.1, rand()*0.05+0.02];
    % 计算传播路径
    distances = sqrt( (x - scatter_pos(1)).^2 + (y - scatter_pos(2)).^2 + scatter_pos(3)^2 );
    delays = 2*distances/c; % 往返延迟
    % 生成回波信号
    echo = circshift(pulse, -round(delays*1/f0));
    echoes{i} = echo + 0.1*randn(size(echo)); % 添加噪声
end

三、波束形成算法实现
1. 延迟求和(DAS)算法
matlab 复制代码
%% 延迟求和波束形成
beamform_DAS = zeros(size(t));
for i = 1:N
    % 计算聚焦延迟 (以焦点为中心)
    distances = sqrt( (x - 0).^2 + (y - 0).^2 + focus_depth^2 );
    delays = 2*distances/c;
    % 对齐信号
    delayed_signal = circshift(echoes{1}, -round(delays*1/f0));
    beamform_DAS = beamform_DAS + delayed_signal;
end
2. 最小方差无失真响应(MVDR)算法
matlab 复制代码
%% MVDR波束形成(旁瓣抑制)
R = cov(cell2mat(echoes')); % 协方差矩阵
[~, ~, V] = svd(R);
weights = V(:, end); % 最小特征值对应的右奇异向量
beamform_MVDR = zeros(size(t));
for i = 1:N
    delayed_signal = circshift(echoes{1}, -round(delays*1/f0));
    beamform_MVDR = beamform_MVDR + weights(i)*delayed_signal;
end

四、成像算法实现
1. 合成孔径成像(SAFT)
matlab 复制代码
%% SAFT成像算法
image = zeros(100, 100); % 重建图像
dx = 0.001; dy = 0.001; % 像素尺寸 (m)
x_img = linspace(-0.05, 0.05, 100);
y_img = linspace(-0.05, 0.05, 100);
[X, Y] = meshgrid(x_img, y_img);

for i = 1:numel(X)
    for j = 1:numel(Y)
        % 计算各阵元到成像点的距离
        distances = sqrt( (X(i,j)-x).^2 + (Y(i,j)-y).^2 + focus_depth^2 );
        delays = 2*distances/c;
        % 信号对齐与叠加
        img(i,j) = sum( circshift(echoes{1}, -round(delays*1/f0)) );
    end
end
2. 全矩阵捕获(FMC)成像
matlab 复制代码
%% FMC数据采集与TFM成像
% 生成FMC数据矩阵 (N阵元×N采样点)
FMC_data = zeros(N, 1000);
for i = 1:N
    FMC_data(i,:) = circshift(pulse, -round((i-1)*d/c*1/f0));
end

% TFM成像算法
image_TFM = zeros(100, 100);
for i = 1:N
    for j = 1:N
        % 时延补偿
        tau = 2*(sqrt( (X - x(i)).^2 + (Y - y(j)).^2 + focus_depth^2 ) - focus_depth)/c;
        delayed_j = circshift(FMC_data(j,:), -round(tau*1/f0));
        image_TFM = image_TFM + conv(delayed_j, FMC_data(i,:), 'same');
    end
end
image_TFM = abs(image_TFM);

五、可视化与性能分析
matlab 复制代码
%% 结果可视化
figure;

% 波束图对比
subplot(2,1,1);
plot(t*1e6, beamform_DAS, 'b', t*1e6, beamform_MVDR, 'r--');
title('波束形成对比 (DAS vs MVDR)');
xlabel('时间 (μs)'); ylabel('幅值');
legend('DAS', 'MVDR');

% 成像结果
subplot(1,2,1);
imagesc(x_img*1e3, y_img*1e3, image);
title('SAFT成像'); colorbar;
xlabel('X (mm)'); ylabel('Y (mm)');

subplot(1,2,2);
imagesc(x_img*1e3, y_img*1e3, image_TFM);
title('TFM成像'); colorbar;
xlabel('X (mm)'); ylabel('Y (mm)');

六、关键优化技术
  1. 动态聚焦控制

    • 根据检测深度自动调整阵元延迟,实现多深度聚焦。
    matlab 复制代码
    function delays = dynamic_focus(depth)
        distances = sqrt( (x - 0).^2 + (y - 0).^2 + depth^2 );
        delays = 2*distances/c;
    end
  2. 旁瓣抑制算法

    • 结合MVDR与自适应滤波,降低栅瓣干扰。
    matlab 复制代码
    function weights = adaptive_weights(echoes)
        R = cov(cell2mat(echoes));
        [U, S, V] = svd(R);
        weights = V(:, end); % 最小特征向量
    end
  3. 噪声抑制处理

    • 使用小波降噪或自适应滤波提升信噪比。
    matlab 复制代码
    denoised_signal = wdenoise(echoes{1}, 4); % 小波降噪

七、工程应用案例
  1. 焊缝缺陷检测

    • 模拟未熔合、裂纹等缺陷的回波信号,验证算法鲁棒性。
    matlab 复制代码
    % 生成缺陷回波
    defect_pos = [0.03, 0, 0.02]; % 缺陷位置 (m)
    defect_dist = sqrt( (x-defect_pos(1)).^2 + (y-defect_pos(2)).^2 + defect_pos(3)^2 );
    defect_delay = 2*defect_dist/c;
    defect_echo = circshift(pulse, -round(defect_delay*1/f0));
  2. 复合材料分层检测

    • 通过多角度扫查识别分层界面反射信号。
    matlab 复制代码
    % 扫查角度设置
    angles = -30:5:30;
    for theta = angles
        % 计算斜入射延迟
        delays = calculate_scan_delay(theta, x, y, focus_depth);
    end

参考代码 用于超声无损检测阵列设计的程序 www.youwenfan.com/contentcsr/99403.html

八、扩展功能模块
  1. COMSOL联合仿真

    • 导出COMSOL声场数据至MATLAB进行后处理。
    matlab 复制代码
    % 读取COMSOL仿真结果
    comsol_data = load('comsol_output.txt');
    [X, Y, Z] = meshgrid(linspace(-0.1,0.1,50), linspace(-0.1,0.1,50), linspace(0,0.2,50));
  2. GPU加速计算

    • 利用CUDA并行计算加速TFM成像。
    matlab 复制代码
    % 启用GPU加速
    FMC_data_gpu = gpuArray(FMC_data);
    image_TFM_gpu = gather(fft(FMC_data_gpu));

九、参数优化建议
参数 推荐范围 影响分析
阵元间距 (d) 0.4λ~0.6λ 过小→栅瓣,过大→主瓣展宽
聚焦深度 ≤10λ 超过则旁瓣升高
采样率 ≥10倍中心频率 低于会导致混叠失真
扫查步长 ≤λ/2 步长过大会漏检小缺陷

十、总结

本程序实现了超声相控阵的核心功能模块,涵盖信号生成、波束形成、成像算法及优化技术。实际应用中需结合具体硬件参数(如探头频率、阵元数量)调整代码,并通过COMSOL仿真验证声场特性。对于复杂结构检测,建议采用FMC+TFM算法提升分辨率,并配合深度学习进行缺陷分类。

相关推荐
寻寻觅觅☆5 小时前
东华OJ-基础题-106-大整数相加(C++)
开发语言·c++·算法
l1t6 小时前
在wsl的python 3.14.3容器中使用databend包
开发语言·数据库·python·databend
赶路人儿6 小时前
Jsoniter(java版本)使用介绍
java·开发语言
ceclar1237 小时前
C++使用format
开发语言·c++·算法
码说AI7 小时前
python快速绘制走势图对比曲线
开发语言·python
Gofarlic_OMS7 小时前
科学计算领域MATLAB许可证管理工具对比推荐
运维·开发语言·算法·matlab·自动化
星空下的月光影子7 小时前
易语言开发从入门到精通:补充篇·网络爬虫与自动化采集分析系统深度实战·HTTP/HTTPS请求·HTML/JSON解析·反爬策略·电商价格监控·新闻资讯采集
开发语言
老约家的可汗7 小时前
初识C++
开发语言·c++
wait_luky7 小时前
python作业3
开发语言·python
消失的旧时光-19438 小时前
第十九课:为什么要引入消息队列?——异步系统设计思想
java·开发语言