清华智谱开源7440亿参数的智能体GLM-5

简介

我们正式推出GLM-5,面向复杂系统工程与长周期智能体任务。规模化仍然是提升通用人工智能(AGI)智能效能的最重要途径之一。相比GLM-4.5,GLM-5将参数量从3550亿(激活320亿)扩展至7440亿(激活400亿),预训练数据从23万亿token增至28.5万亿token。GLM-5还集成了深度求索稀疏注意力机制(DSA),在保持长上下文能力的同时大幅降低部署成本。

强化学习旨在弥合预训练模型"达标"与"卓越"之间的鸿沟。然而由于RL训练效率问题,在大语言模型中规模化部署面临挑战。为此我们开发了slime------创新的异步RL基础设施,显著提升训练吞吐效率,支持更精细化的训练后迭代。得益于预训练与训练后的双重突破,GLM-5在各类学术基准测试中较GLM-4.7实现显著提升,在推理、编程和智能体任务领域达到全球开源模型顶尖水平,进一步缩小与前沿模型的差距。

基准测试

GLM-5 GLM-4.7 DeepSeek-V3.2 Kimi K2.5 Claude Opus 4.5 Gemini 3 Pro GPT-5.2 (xhigh)
HLE 30.5 24.8 25.1 31.5 28.4 37.2 35.4
HLE (w/ Tools) 50.4 42.8 40.8 51.8 43.4* 45.8* 45.5*
AIME 2026 I 92.7 92.9 92.7 92.5 93.3 90.6 -
HMMT Nov. 2025 96.9 93.5 90.2 91.1 91.7 93.0 97.1
IMOAnswerBench 82.5 82.0 78.3 81.8 78.5 83.3 86.3
GPQA-Diamond 86.0 85.7 82.4 87.6 87.0 91.9 92.4
SWE-bench Verified 77.8 73.8 73.1 76.8 80.9 76.2 80.0
SWE-bench Multilingual 73.3 66.7 70.2 73.0 77.5 65.0 72.0
Terminal-Bench 2.0 (Terminus 2) 56.2 / 60.7 † 41.0 39.3 50.8 59.3 54.2 54.0
Terminal-Bench 2.0 (Claude Code) 56.2 / 61.1 † 32.8 46.4 - 57.9 - -
CyberGym 43.2 23.5 17.3 41.3 50.6 39.9 -
BrowseComp 62.0 52.0 51.4 60.6 37.0 37.8 -
BrowseComp (w/ Context Manage) 75.9 67.5 67.6 74.9 67.8 59.2 65.8
BrowseComp-Zh 72.7 66.6 65.0 62.3 62.4 66.8 76.1
τ²-Bench 89.7 87.4 85.3 80.2 91.6 90.7 85.5
MCP-Atlas (Public Set) 67.8 52.0 62.2 63.8 65.2 66.6 68.0
Tool-Decathlon 38.0 23.8 35.2 27.8 43.5 36.4 46.3
Vending Bench 2 $4,432.12 $2,376.82 $1,034.00 $1,198.46 $4,967.06 $5,478.16 $3,591.33

*:指其全套测试的得分。

†:Terminal-Bench 2.0的验证版本,修复了一些模糊指令。

详见脚注获取更多评估细节。

脚注

  • 人类终极考试(HLE)及其他推理任务 :我们评估时设置最大生成长度为131,072个token(temperature=1.0, top_p=0.95, max_new_tokens=131072)。默认情况下,我们报告纯文本子集的结果;带*标记的结果来自完整数据集。我们使用GPT-5.2(中等规模)作为评判模型。对于带工具的HLE评估,我们使用最大上下文长度202,752个token。
  • SWE-bench与SWE-bench多语言版 :我们使用OpenHands运行SWE-bench测试套件,并采用定制化的指令提示。设置参数:temperature=0.7, top_p=0.95, max_new_tokens=16384,上下文窗口为200K。
  • 浏览器交互评测(BrowserComp):在没有上下文管理的情况下,我们仅保留最近5轮对话的细节。启用上下文管理时,采用与DeepSeek-v3.2和Kimi K2.5相同的全丢弃策略。
  • 终端基准测试2.0(Terminus 2) :我们使用Terminus框架评估,参数为timeout=2h, temperature=0.7, top_p=1.0, max_new_tokens=8192,上下文窗口为128K。资源限制为16核CPU和32GB内存。
  • 终端基准测试2.0(Claude代码版) :在Claude Code 2.1.14(思考模式,默认计算量)中评估,参数为temperature=1.0, top_p=0.95, max_new_tokens=65536。由于生成速度差异,我们移除了挂钟时间限制,但保留每项任务的CPU和内存约束。分数取5次运行的平均值。我们修复了Claude Code引入的环境问题,并在已消除歧义指令的验证版Terminal-Bench 2.0数据集上补充了结果(参见:https://huggingface.co/datasets/zai-org/terminal-bench-2-verified)。
  • 网络攻防演练(CyberGym) :在Claude Code 2.1.18(思考模式,禁用网页工具)中评估,参数为temperature=1.0, top_p=1.0, max_new_tokens=32000,每项任务限时250分钟。结果基于1,507项任务的单次Pass@1通过率。
  • MCP-Atlas图谱测试:所有模型均在500项公开子集的思考模式下评估,每项任务限时10分钟。我们使用Gemini 3 Pro作为评判模型。
  • τ²基准测试:在零售和电信领域添加了小型提示调整,以避免因用户提前终止导致的失败。针对航空领域,我们应用了Claude Opus 4.5系统卡中提出的领域修复方案。
  • 自动售货机基准测试2 :由安顿实验室独立运行。

本地部署GLM-5

环境准备

vLLM、SGLang和xLLM均支持GLM-5的本地部署。此处提供简易部署指南。

  • vLLM

    使用 Docker 作为:

    shell 复制代码
    docker pull vllm/vllm-openai:nightly 

或者使用 pip:

复制代码
```shell
pip install -U vllm --pre --index-url https://pypi.org/simple --extra-index-url https://wheels.vllm.ai/nightly
```

然后升级transformers:

复制代码
```
pip install git+https://github.com/huggingface/transformers.git
```
  • SGLang

    使用 Docker 作为:

    bash 复制代码
    docker pull lmsysorg/sglang:glm5-hopper # For Hopper GPU
    docker pull lmsysorg/sglang:glm5-blackwell # For Blackwell GPU

部署

  • vLLM

    shell 复制代码
    vllm serve zai-org/GLM-5-FP8 \
         --tensor-parallel-size 8 \
         --gpu-memory-utilization 0.85 \
         --speculative-config.method mtp \
         --speculative-config.num_speculative_tokens 1 \
         --tool-call-parser glm47 \
         --reasoning-parser glm45 \
         --enable-auto-tool-choice \
         --served-model-name glm-5-fp8

查看配方获取更多详情。

  • SGLang

    shell 复制代码
    python3 -m sglang.launch_server \
      --model-path zai-org/GLM-5-FP8 \
      --tp-size 8 \
      --tool-call-parser glm47  \
      --reasoning-parser glm45 \
      --speculative-algorithm EAGLE \
      --speculative-num-steps 3 \
      --speculative-eagle-topk 1 \
      --speculative-num-draft-tokens 4 \
      --mem-fraction-static 0.85 \
      --served-model-name glm-5-fp8

    查看 sglang 教程 获取更多细节。

  • xLLM 及其他昇腾 NPU

    请查阅部署指南 此处

相关推荐
Deepoch2 小时前
Deepoc 具身模型开发板:赋能电厂巡检机器人,筑牢能源运维智能防线
人工智能·科技·机器人·具身模型·deepoc·电厂巡检
gorgeous(๑>؂<๑)2 小时前
【ICLR26-Oral Paper-Meta】先见之明:揭秘语言预训练中大型语言模型的视觉先验
人工智能·深度学习·算法·机器学习·语言模型
凉冰不加冰2 小时前
机器学习系统详解
人工智能·机器学习
诚思报告YH2 小时前
普及化专业级3D扫描设备(三角结构光技术)市场洞察:未来六年复合年均增长率(CAGR)为4.6%
大数据·人工智能
橙-极纪元2 小时前
AI代码生产部署安全标准作业程序(SOP)的附件1:风险评估矩阵
人工智能·安全·矩阵
SunnyRivers2 小时前
理解人工智能与大语言模型(LLMs)
人工智能·大语言模型
好家伙VCC2 小时前
**发散创新:用 Rust构建多智能体系统,让分布式协作更高效**在人工智能快速演进的今天,**多智能体系统(
java·人工智能·分布式·python·rust
格林威2 小时前
Baumer相机汽车雨刮胶条磨损检测:实现寿命预测的 6 个关键技术,附 OpenCV+Halcon 实战代码!
人工智能·opencv·计算机视觉·汽车·视觉检测·工业相机·堡盟相机
陈天伟教授2 小时前
人工智能应用- 人机对战:01. AI 游戏
人工智能·深度学习·神经网络·游戏·自然语言处理·机器翻译