目录
方案一:导出配置文件并在新服务器重建(最推荐,最稳健)
bash
# 激活环境
conda activate r_env
source activate r_env
# 导出为 YAML 文件 (包含所有包名和版本)
conda env export > r_env.yml
bash
# 使用 scp 命令 (简单直接)
scp -r /home/u3012339/r_env.yml wanzhougeo@175.159.166.96:/geogfs1/home/wanzhougeo/Packages/
bash
cd /geogfs1/home/wanzhougeo/Packages/
# 确保已安装 Conda
conda env create -f r_env.yml

R环境验证
bash
conda activate r_env
source activate r_env
查看 R 版本,代码如下:
bash
R --version

R环境库包安装
根据以下命令查看库包是否安装:
R
# 要检查的包列表
packages <- c("MGLM", "spgwr", "robustHD", "raster", "tictoc", "osqp", "doParallel")q
# 检查哪些包没有安装
not_installed <- packages[!packages %in% installed.packages()[,"Package"]]
# 输出缺失的包
if (length(not_installed) == 0) {
cat("所有包都已安装。\n")
} else {
cat("以下包未安装:\n")
print(not_installed)
}
输出显示
text
"MGLM" "spgwr" "tictoc" "doParallel"
方式1:
bash
# 设置可靠的 CRAN 镜像
options(repos = c(CRAN = "https://cloud.r-project.org"))
# 一次性安装多个包
install.packages(c("MGLM", "spgwr", "robustHD", "raster", "tictoc", "osqp", "doParallel"))
方式2:
bash
install.packages("devtools",repos="http://cran.r-project.org")
# 使用 https 协议,并选择一个可靠的镜像(如 RStudio 的全球 CDN)
install.packages("devtools", repos = "https://cloud.r-project.org")
library(devtools)
library('BPST')的安装如下:
bash
install_github("作者名/BPST") # 替换 "作者名/BPST" 为实际的 GitHub 仓库地址
install_github("funstatpackages/BPST")
devtools::install_github("FIRST-Data-Lab/BPST")
library('Triangulation')的安装如下:
bash
install_github("funstatpackages/Triangulation")
install_github("FIRST-Data-Lab/Triangulation")
devtools::install_github("FIRST-Data-Lab/Triangulation")
library('Triangulation')
library('robustHD')的安装如下:
bash
install.packages("scales", type = "binary")
install.packages("ggplot2", dependencies = TRUE, type = "binary")
library('robustHD')
实例:运行R代码
bash
Rscript Main_SVCMsp_GWR_China_years_server.R