项目介绍
本项目是一个基于深度学习的宠物识别系统,旨在实现对猫和狗的自动识别与分类。系统采用前后端分离架构,前端使用Vue3+Element Plus构建用户友好的交互界面,后端基于Flask框架提供高效的API服务,核心识别算法采用TensorFlow深度学习框架和ResNet50卷积神经网络模型。



选题背景与意义
随着人工智能技术的快速发展,图像识别在各个领域的应用越来越广泛。宠物作为人们生活中的重要伴侣,对宠物进行自动化识别具有重要的实用价值和研究意义。传统的宠物识别方法主要依赖人工判断,效率低下且准确性难以保证,而基于深度学习的图像识别技术为解决这一问题提供了新的思路。
关键技术栈:ResNet50
ResNet50是由微软研究院提出的深度卷积神经网络模型,是ResNet(Residual Network)系列中的经典模型之一。该模型通过引入残差连接(Residual Connection)机制,有效解决了深度神经网络中的梯度消失和梯度爆炸问题,使得网络可以构建得更深,从而显著提升了图像识别的准确性。
ResNet50模型包含50层卷积和全连接层,主要由输入层、卷积层、残差块、池化层和全连接层组成。其核心创新在于残差块结构,通过将输入直接与输出相加,形成跳跃连接(Skip Connection),使得网络可以学习残差映射,简化了训练过程。这种设计使得ResNet50在处理复杂图像特征时具有更强的表达能力。
技术架构图

系统功能模块图

演示视频 and 完整代码 and 安装
请点击下方卡片↓↓↓添加作者获取,或在我的主页添加作者获取。