快速开始
本快速入门教程将演示如何使用 LangGraph 图 API 或函数式 API 构建一个计算器智能体。
-
如果你希望将智能体定义为节点与边的图结构,请使用图 API。
-
如果你希望将智能体定义为单个函数,请使用函数式 API。
使用图 API
1. 定义工具和模型
本示例中,我们将使用 Claude Sonnet 4.5 模型,并定义加法、乘法、除法工具。
python
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# 定义工具
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# 为大模型绑定工具
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
2. 定义状态
图的状态用于存储消息和大模型调用次数。
LangGraph 中的状态在整个智能体执行过程中保持持久化。
使用带 operator.add 的 Annotated 类型可以确保新消息追加到现有列表,而不是替换列表。
python
from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator
class MessagesState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
llm_calls: int
3. 定义模型节点
模型节点用于调用大模型,并决定是否调用工具。
python
from langchain.messages import SystemMessage
def llm_call(state: dict):
"""LLM decides whether to call a tool or not"""
return {
"messages": [
model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ state["messages"]
)
],
"llm_calls": state.get('llm_calls', 0) + 1
}
4. 定义工具节点
工具节点用于执行工具调用并返回结果。
python
from langchain.messages import ToolMessage
def tool_node(state: dict):
"""Performs the tool call"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
5. 定义结束逻辑
条件边函数根据大模型是否发起工具调用,来决定路由到工具节点或直接结束。
python
from typing import Literal
from langgraph.graph import StateGraph, START, END
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# 如果 LLM 调用了工具,则执行动作
if last_message.tool_calls:
return "tool_node"
# 否则停止(回复用户)
return END
6. 构建并编译智能体
使用 StateGraph 类构建智能体,并使用 compile 方法编译。
python
# 构建工作流
agent_builder = StateGraph(MessagesState)
# 添加节点
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
# 添加边连接节点
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
# 编译智能体
agent = agent_builder.compile()
# 展示智能体结构图
from IPython.display import Image, display
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# 调用
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
如需了解如何使用 LangSmith 追踪智能体,请查看 LangSmith 文档。
恭喜!你已经使用 LangGraph 图 API 构建了第一个智能体。
完整代码示例
python
# Step 1: Define tools and model
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
# Step 2: Define state
from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator
class MessagesState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
llm_calls: int
# Step 3: Define model node
from langchain.messages import SystemMessage
def llm_call(state: dict):
"""LLM decides whether to call a tool or not"""
return {
"messages": [
model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ state["messages"]
)
],
"llm_calls": state.get('llm_calls', 0) + 1
}
# Step 4: Define tool node
from langchain.messages import ToolMessage
def tool_node(state: dict):
"""Performs the tool call"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
# Step 5: Define logic to determine whether to end
from typing import Literal
from langgraph.graph import StateGraph, START, END
# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# If the LLM makes a tool call, then perform an action
if last_message.tool_calls:
return "tool_node"
# Otherwise, we stop (reply to the user)
return END
# Step 6: Build agent
# Build workflow
agent_builder = StateGraph(MessagesState)
# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
# Compile the agent
agent = agent_builder.compile()
from IPython.display import Image, display
# Show the agent
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# Invoke
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
使用函数式 API
1. 定义工具和模型
本示例中,我们将使用 Claude Sonnet 4.5 模型,并定义加法、乘法、除法工具。
python
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
from langgraph.graph import add_messages
from langchain.messages import (
SystemMessage,
HumanMessage,
ToolCall,
)
from langchain_core.messages import BaseMessage
from langgraph.func import entrypoint, task
2. 定义模型节点
模型节点用于调用大模型,并决定是否调用工具。
@task 装饰器将函数标记为可在智能体中执行的任务。任务可以在入口函数中同步或异步调用。
python
@task
def call_llm(messages: list[BaseMessage]):
"""LLM decides whether to call a tool or not"""
return model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ messages
)
3. 定义工具节点
工具节点用于执行工具调用并返回结果。
python
@task
def call_tool(tool_call: ToolCall):
"""Performs the tool call"""
tool = tools_by_name[tool_call["name"]]
return tool.invoke(tool_call)
4. 定义智能体
使用 @entrypoint 函数构建智能体。
在函数式 API 中,你不需要显式定义节点和边,而是在单个函数中编写标准的控制流逻辑(循环、条件判断)。
python
@entrypoint()
def agent(messages: list[BaseMessage]):
model_response = call_llm(messages).result()
while True:
if not model_response.tool_calls:
break
# Execute tools
tool_result_futures = [
call_tool(tool_call) for tool_call in model_response.tool_calls
]
tool_results = [fut.result() for fut in tool_result_futures]
messages = add_messages(messages, [model_response, *tool_results])
model_response = call_llm(messages).result()
messages = add_messages(messages, model_response)
return messages
# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
for chunk in agent.stream(messages, stream_mode="updates"):
print(chunk)
print("\n")
如需了解如何使用 LangSmith 追踪智能体,请查看 LangSmith 文档。
恭喜!你已经使用 LangGraph 函数式 API 构建了第一个智能体。
完整代码示例
python
# Step 1: Define tools and model
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"claude-sonnet-4-5-20250929",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
from langgraph.graph import add_messages
from langchain.messages import (
SystemMessage,
HumanMessage,
ToolCall,
)
from langchain_core.messages import BaseMessage
from langgraph.func import entrypoint, task
# Step 2: Define model node
@task
def call_llm(messages: list[BaseMessage]):
"""LLM decides whether to call a tool or not"""
return model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ messages
)
# Step 3: Define tool node
@task
def call_tool(tool_call: ToolCall):
"""Performs the tool call"""
tool = tools_by_name[tool_call["name"]]
return tool.invoke(tool_call)
# Step 4: Define agent
@entrypoint()
def agent(messages: list[BaseMessage]):
model_response = call_llm(messages).result()
while True:
if not model_response.tool_calls:
break
# Execute tools
tool_result_futures = [
call_tool(tool_call) for tool_call in model_response.tool_calls
]
tool_results = [fut.result() for fut in tool_result_futures]
messages = add_messages(messages, [model_response, *tool_results])
model_response = call_llm(messages).result()
messages = add_messages(messages, model_response)
return messages
# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
for chunk in agent.stream(messages, stream_mode="updates"):
print(chunk)
print("\n")