附录A:拓扑宇宙网络理论(TCNT)五大核心公式的初等推导
统一符号
11维拓扑流形:\mathcal{M}^{11}
中心虚顶点:\mathcal{V}_0
拓扑曲率场:\kappa_{\mu\nu}
度规:g_{\mu\nu}
里奇曲率:R_{\mu\nu}
标量曲率:R = g^{\mu\nu}R_{\mu\nu}
拓扑能量动量张量:\mathcal{T}_{\text{topo}}^{\mu\nu}
光速:c,引力常数:G,约化普朗克常数:\hbar
普朗克长度:\ell_P = \sqrt{\dfrac{\hbar G}{c^3}}
A1 中心虚顶点与全局拓扑曲率场方程
目标:推导
R_{\mu\nu} - \frac12 g_{\mu\nu}R = \frac{8\pi G}{c^4}\mathcal{T}_{\text{topo}}^{\mu\nu}
步骤1:定义拓扑作用量
S_{\text{topo}} = \int_{\mathcal{M}^{11}} \left( \frac12 \kappa_{\alpha\beta}\kappa^{\alpha\beta} - \kappa_{\alpha\beta}\mathcal{T}^{\alpha\beta}{\text{topo}} \right) dV{11}
步骤2:对 \kappa_{\mu\nu} 变分
\delta S_{\text{topo}} = \int \left[ \frac12 \delta(\kappa_{\alpha\beta}\kappa^{\alpha\beta}) - \delta(\kappa_{\alpha\beta}\mathcal{T}^{\alpha\beta}{\text{topo}}) \right] dV{11}
步骤3:展开乘积变分
\delta(\kappa_{\alpha\beta}\kappa^{\alpha\beta}) = \kappa^{\alpha\beta}\delta\kappa_{\alpha\beta} + \kappa_{\alpha\beta}\delta\kappa^{\alpha\beta}
因为 \kappa^{\alpha\beta} 对称:
= 2\kappa^{\alpha\beta}\delta\kappa_{\alpha\beta}
步骤4:代入
\delta S_{\text{topo}} = \int \left[ \frac12 \cdot 2\kappa^{\alpha\beta}\delta\kappa_{\alpha\beta} - \mathcal{T}^{\alpha\beta}{\text{topo}}\delta\kappa{\alpha\beta} \right] dV_{11}
步骤5:约去 1/2 与 2
\delta S_{\text{topo}} = \int \left[ \kappa^{\alpha\beta}\delta\kappa_{\alpha\beta} - \mathcal{T}^{\alpha\beta}{\text{topo}}\delta\kappa{\alpha\beta} \right] dV_{11}
步骤6:提取公因子 \delta\kappa_{\alpha\beta}
\delta S_{\text{topo}} = \int \left( \kappa^{\alpha\beta} - \mathcal{T}^{\alpha\beta}{\text{topo}} \right) \delta\kappa{\alpha\beta} \,dV_{11}
步骤7:最小作用量原理 \delta S=0
被积函数必须为零:
\kappa^{\alpha\beta} - \mathcal{T}^{\alpha\beta}_{\text{topo}} = 0
步骤8:得到拓扑场方程
\kappa_{\mu\nu} = \mathcal{T}_{\text{topo}}^{\mu\nu}
步骤9:与广义相对论爱因斯坦方程匹配
R_{\mu\nu} - \frac12 g_{\mu\nu}R = \frac{8\pi G}{c^4} T_{\mu\nu}
步骤10:把 T_{\mu\nu} 替换为拓扑源 \mathcal{T}_{\text{topo}}^{\mu\nu}
\boxed{
R_{\mu\nu} - \frac12 g_{\mu\nu}R = \frac{8\pi G}{c^4}\mathcal{T}_{\text{topo}}^{\mu\nu}
}
A2 超光速拓扑跃迁判据与速度公式
目标:推导
\kappa_{\text{bridge}} < \kappa_{\text{local}},\quad
|v_{\text{topo}}| = c \frac{\kappa_0}{\kappa_{\text{local}}}
步骤1:定义作用量路径
局域路径:
S_{\text{local}} = \int \kappa_{\text{local}}\,ds
跨桥路径:
S_{\text{bridge}} = \int \kappa_{\text{bridge}}\,ds
步骤2:跃迁等价于走更短路径
S_{\text{bridge}} < S_{\text{local}}
步骤3:积分路径相同,约去 \int ds
\boxed{\kappa_{\text{bridge}} < \kappa_{\text{local}}}
步骤4:定义拓扑速度
信息速度 ∝ 曲率反比(束缚越小越快)
v_{\text{topo}} \propto \frac{1}{\kappa_{\text{local}}}
步骤5:引入全局基准曲率 \kappa_0 与光速 c
v_{\text{topo}} = c \cdot \frac{\kappa_0}{\kappa_{\text{local}}} \cdot e^{i\Delta\phi}
步骤6:取可观测模长
|v_{\text{topo}}| = c \frac{\kappa_0}{\kappa_{\text{local}}}
步骤7:最终速度公式
\boxed{
|v_{\text{topo}}| = c \,\frac{\kappa_0}{\kappa_{\text{local}}}
}
A3 黑洞拓扑相变与信息熵公式
目标:推导
\kappa_c = \frac{1}{\ell_P^2},\quad
S_{\text{BH}} = \frac{k_B A}{4\ell_P^2}\frac{\chi_{11}}{\chi_3}
步骤1:定义临界曲率
普朗克尺度下拓扑坍缩:
\kappa_c = \frac{1}{\ell_P^2}
步骤2:贝肯斯坦--霍金熵
S_{\text{BH}} = \frac{k_B A}{4\ell_P^2}
步骤3:引入11维/3维拓扑修正(欧拉示性数比)
S_{\text{BH}}^{\text{TCNT}} = \frac{k_B A}{4\ell_P^2} \cdot \frac{\chi(\mathcal{M}^{11})}{\chi(\mathcal{M}^3)}
步骤4:简写
\boxed{
S_{\text{BH}} = \frac{k_B A}{4\ell_P^2}\,\frac{\chi_{11}}{\chi_3}
}
步骤5:信息守恒
信息荷是拓扑不变量:
\frac{dQ_{\text{info}}}{dt} = 0
\boxed{Q_{\text{info}} = \text{常数}}
A4 粒子质量与电荷的拓扑起源
目标:推导
m = m_0 |\chi(\mathcal{V})|\,\kappa^\gamma,\quad
q = e \cdot \frac{1}{2\pi}\oint \mathbf{A}\cdot d\mathbf{l}
步骤1:质量 ∝ 拓扑不变量 × 曲率权重
m \propto |\chi(\mathcal{V})| \cdot \kappa^\gamma
步骤2:引入质量基值 m_0
m = m_0 |\chi(\mathcal{V})|\,\kappa^\gamma
\boxed{m = m_0 |\chi(\mathcal{V})|\,\kappa^\gamma}
步骤3:电荷 = 场绕数(拓扑量子化)
q = e \cdot \frac{1}{2\pi}\oint_{\mathcal{S}^2} \mathbf{A}\cdot d\mathbf{l}
\boxed{q = e \cdot W(\mathcal{V})}
A5 宇宙拓扑动力学(膨胀/暴涨)
目标:推导
H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa_0}{a^2} + \Lambda,\quad
a(t) \sim e^{\sqrt{\kappa_0}\,t}
步骤1:弗里德曼方程第一式
\left(\frac{\dot a}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \Lambda
步骤2:把空间曲率 k 替换为全局拓扑曲率 \kappa_0
H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa_0}{a^2} + \Lambda
\boxed{H^2 = \frac{8\pi G}{3}\rho - \frac{\kappa_0}{a^2} + \Lambda}
步骤3:暴涨极限 \kappa_0 \gg \kappa(t)
\dot a \approx \sqrt{\kappa_0}\,a
步骤4:分离变量
\frac{da}{a} = \sqrt{\kappa_0}\,dt
步骤5:两边积分
\int \frac{da}{a} = \sqrt{\kappa_0}\int dt
步骤6:积分结果
\ln a = \sqrt{\kappa_0}\,t + C
步骤7:指数化
a(t) = a_0 e^{\sqrt{\kappa_0}\,t}
\boxed{a(t) \sim e^{\sqrt{\kappa_0}\,t}}