Transformer-LSTM分类 | Matlab实现Transformer-LSTM多特征分类预测/故障诊断

Transformer-LSTM分类 | Matlab实现Transformer-LSTM多特征分类预测/故障诊断

目录

效果一览








基本介绍

1.Matlab实现Transformer-LSTM多特征分类预测/故障诊断,运行环境Matlab2023b及以上;

2.excel数据,方便替换,输入12个特征,分四类,可在下载区获取数据和程序内容。

3.图很多,包括分类效果图,混淆矩阵图。命令窗口输出分类准确率、灵敏度、特异性、曲线下面积、Kappa系数、F值。

4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现Transformer-LSTM多特征分类预测/故障诊断
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  读取数据
res = xlsread('data.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

t_train = categorical(T_train)';
t_test  = categorical(T_test )';

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1} = P_test( :, :, 1, i);
end

%%  Transformer-lstm网络
%网络搭建
numChannels = num_dim;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
1296004525 小时前
简单transformer运用
人工智能·深度学习·transformer
机器学习之心9 小时前
Matlab实现LSTM-SVM回归预测,作者:机器学习之心
机器学习·matlab·lstm·lstm-svm
仙人掌_lz9 小时前
优化 Transformer 模型:基于知识蒸馏、量化技术及 ONNX
人工智能·深度学习·ai·语言模型·自然语言处理·llm·transformer
WK-Q1 天前
【笔记】MLA矩阵吸收分析
人工智能·深度学习·语言模型·自然语言处理·transformer
wu_android1 天前
Java 2D 图形类总结与分类
java·分类
白熊1882 天前
【机器学习基础】机器学习入门核心算法:多分类与多标签分类算法
算法·机器学习·分类
木亦汐丫2 天前
【STIP】安全Transformer推理协议
transformer·stip·半对称排列的保护方案·任何推理精度无损·安全高效·三方威胁模型·设备-云端协作
IMA小队长2 天前
06.概念二:神经网络
人工智能·深度学习·机器学习·transformer
三三十二2 天前
MATLAB实战:机器学习分类回归示例
机器学习·matlab·分类·回归
放羊郎3 天前
训练中常见的运动强度分类
分类·运动·跑步·强度·摄氧量