分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测

分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测

目录

    • [分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测](#分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测)

分类效果




基本介绍

1.Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测。多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。

2.数据输入15个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;

3.可视化展示分类准确率;

4.运行环境matlab2023b及以上。

模型描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。

程序设计

clike 复制代码
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test  = mapminmax('apply', P_test, ps_input);

t_train =  categorical(T_train)';
t_test  =  categorical(T_test )';

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层
    convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],32个特征图
    reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
机器学习之心12 天前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测
多输入单输出回归预测·cnn·gru·transformer·cnn-gru
机器学习之心17 天前
PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测
支持向量机·分类·多特征分类预测·pca-svm·主成分分析结合支持向量机
胖哥真不错20 天前
Python基于TensorFlow实现双向长短时记忆循环神经网络加注意力机制回归模型(BiLSTM-Attention回归算法)项目实战
python·tensorflow·attention·项目实战·bilstm·双向长短时记忆循环神经网络·注意力机制回归模型
胖哥真不错20 天前
Python基于TensorFlow实现双向循环神经网络GRU加注意力机制分类模型(BiGRU-Attention分类算法)项目实战
python·tensorflow·attention·项目实战·bigru·双向循环神经网络gru·注意力机制分类模型
机器学习之心22 天前
CNN-Attention分类预测 | Matlab实现多特征分类预测
cnn-attention·多特征分类预测
机器学习之心25 天前
SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
人工智能·matlab·lstm·attention·多变量时间序列预测·ssa-tcn-lstm
简简单单做算法2 个月前
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
人工智能·深度学习·gru·cnn-gru·贝叶斯优化·数据分类识别
CS_木成河2 个月前
【HuggingFace Transformers】OpenAIGPTModel的核心——Block源码解析
人工智能·gpt·深度学习·transformer·openai·attention·mlp
SpikeKing3 个月前
LLM - GPT(Decoder Only) 类模型的 KV Cache 公式与原理 教程
gpt·attention·公式·矩阵乘法·kv cache·decoderonly·键值缓存
逐梦苍穹3 个月前
【NLP】注意力机制:规则、作用、原理、实现方式
人工智能·自然语言处理·attention·注意力机制