PyTorch实战(7)——生成对抗网络(Generative Adversarial Network, GAN)实践详解生成对抗网络 (Generative Adversarial Network, GAN) 最早由 Ian Goodfellow 于 2014 年提出,其中“对抗”一词指的是两个神经网络之间在零和博弈框架下相互竞争的特性。生成器试图创建与真实样本无法区分的数据样本,而判别器则试图区分生成器生成的样本与真实样本。GAN 模型可以生成多种形式的内容,从几何形状和数字序列到高分辨率的彩色图像,甚至逼真的音乐作品。在本节中,我们将介绍 GAN 的理论基础。然后,介绍如何使用 PyTorch 从零开始构建 GAN,以