机器学习-无监督学习总结

无监督学习总结

无监督学习总结

无监督学习(Unsupervised Learning) 是机器学习中的一种范式,它在没有明确标注的数据 上进行训练,旨在发现数据的潜在结构、模式或分布。常见的无监督学习任务包括聚类(Clustering)降维(Dimensionality Reduction)密度估计(Density Estimation)生成建模(Generative Modeling)。以下是无监督学习的关键方法和应用场景。


1. 聚类(Clustering)

聚类是一种将数据点自动分组的方法,目标是让相似的数据点聚在一起,不相似的数据点远离

常见方法

  • K-Means:基于质心(Centroid)迭代优化,使数据点分配到最近的簇中心。
  • 层次聚类(Hierarchical Clustering):构建数据的层次结构,可用于不同粒度的聚类分析。
  • DBSCAN:基于密度的聚类方法,适用于噪声较多的场景。
  • GMM(高斯混合模型):使用多个高斯分布拟合数据,提高灵活性。

主要应用

  • 客户分群(营销分析)
  • 社交网络社区检测
  • 图像分割
  • 异常检测

2. 降维(Dimensionality Reduction)

降维用于减少数据的特征维度,在保持数据结构的同时,提高计算效率和可视化能力。

常见方法

  • PCA(主成分分析):找到方差最大的投影方向,将高维数据转换为低维。
  • t-SNE:用于数据可视化,能够保留局部数据的相似性。
  • UMAP:比 t-SNE 更快,同时能保留更多全局结构。

主要应用

  • 数据可视化
  • 特征提取
  • 降低计算成本
  • 去除冗余信息

3. 密度估计(Density Estimation)

密度估计用于估算数据的概率分布,帮助理解数据的结构。

常见方法

  • Kernel Density Estimation(KDE):使用核函数平滑估计数据分布。
  • 高斯混合模型(GMM):使用多个高斯分布来拟合数据的概率分布。
  • 隐变量模型(Latent Variable Models):如自编码器(Autoencoder)和变分自编码器(VAE)。

主要应用

  • 异常检测(检测数据的异常点)
  • 生成建模(数据合成)
  • 概率密度建模(学习数据的分布)

4. 生成模型(Generative Models)

生成模型用于学习数据的分布,并能够生成新的数据样本 ,广泛应用于图像、文本和音频生成

常见方法

  • GAN(生成对抗网络):通过生成器(Generator)和判别器(Discriminator)的博弈训练,生成逼真的数据。
  • VAE(变分自编码器):通过隐变量空间(Latent Space)学习数据的概率分布,从而生成数据。
  • 自回归模型(Autoregressive Models):如 PixelRNN、PixelCNN 通过建模像素间的条件概率生成图像。

主要应用

  • 图像生成(AI 画作、深度伪造)
  • 文本生成(GPT 类模型)
  • 数据增强
  • 去噪(Denoising)

总结:无监督学习的价值

方法 主要目标 关键好处
聚类(Clustering) 发现数据中的自然组别 适用于客户分群、社交网络分析、异常检测
降维(Dimensionality Reduction) 减少特征维度,提高计算效率 适用于可视化、数据压缩、去噪
密度估计(Density Estimation) 估算数据的概率分布 适用于异常检测、概率建模
生成模型(Generative Models) 生成新的数据样本 适用于 AI 生成艺术、文本合成、去噪

无监督学习在许多领域都具有重要价值,它能够帮助我们理解数据的内在结构,减少数据维度,提高模型的泛化能力,并且可以生成高质量的数据样本

相关推荐
杭州泽沃电子科技有限公司8 分钟前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao2 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北123 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887823 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰4 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技4 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_4 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1515 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai5 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205315 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构