复现:latent diffusion(LDM)stable diffusion

复现LDM 已解决所有报错

下载项目

https://github.com/CompVis/latent-diffusion

然后运行环境配置:

复制代码
conda env create -f environment.yaml
conda activate ldm

下载预先训练的权重:

python 复制代码
下载官方权重文件:
mkdir -p models/ldm/text2img-large/
wget -O models/ldm/text2img-large/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt

# 下载modelscope的权重文件:
# pip install modelscope
# modelscope download --model AI-ModelScope/stable-diffusion-v1-5 v1-5-pruned-emaonly.ckpt --local_dir ./models/ldm/stable-diffusion-v1-5
# 链接起来:
# ln -s /root/netdisk/latent-diffusion-main/models/ldm/stable-diffusion-v1-5/v1-5-pruned-emaonly.ckpt models/ldm/stable-diffusion-v1/model.ckpt
复制代码
# 1. 克隆 taming-transformers 仓库
git clone https://github.com/CompVis/taming-transformers.git
cd taming-transformers
安装 taming 模块
pip install .
返回项目根目录
cd /root/netdisk/latent-diffusion-main
直接引用taming包需要将下载的包放到固定的环境目录下:
cp -r /root/netdisk/latent-diffusion-main/taming-transformers /root/.pyenv/versions/3.8.0/lib/python3.8/site-packages
python -c "import taming-transformers; print(my_package.__file__)"

手动下载bert-base-uncased:https://huggingface.co/google-bert/bert-base-uncased/tree/main

修改代码:

复制代码
from transformers import BertTokenizerFast  # TODO: add to reuquirements
        # 从本地路径加载分词器
        self.tokenizer = BertTokenizerFast.from_pretrained("./bert-base-uncased")

运行采样生成:

复制代码
python scripts/txt2img.py --prompt "a virus monster is playing guitar, oil on canvas" --ddim_eta 0.0 --n_samples 4 --n_iter 4 --scale 5.0  --ddim_steps 50

python scripts/txt2img.py --prompt "Handsome man and beautiful woman walking in the rain, oil on canvas" --ddim_eta 0.0 --n_samples 4 --n_iter 4 --scale 5.0  --ddim_steps 50

效果展示:

相关推荐
threelab4 分钟前
07.three官方示例+编辑器+AI快速学习webgl_buffergeometry_attributes_integer
人工智能·学习·编辑器
背太阳的牧羊人30 分钟前
tokenizer.encode_plus,BERT类模型 和 Sentence-BERT 他们之间的区别与联系
人工智能·深度学习·bert
学算法的程霖34 分钟前
TGRS | FSVLM: 用于遥感农田分割的视觉语言模型
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·遥感图像分类
博睿谷IT99_1 小时前
华为HCIP-AI认证考试版本更新通知
人工智能·华为
一点.点2 小时前
SafeDrive:大语言模型实现自动驾驶汽车知识驱动和数据驱动的风险-敏感决策——论文阅读
人工智能·语言模型·自动驾驶
concisedistinct2 小时前
如何评价大语言模型架构 TTT ?模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?
人工智能·语言模型·大模型
找了一圈尾巴2 小时前
AI Agent-基础认知与架构解析
人工智能·ai agent
jzwei0232 小时前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
小言Ai工具箱2 小时前
PuLID:高效的图像变脸,可以通过文本提示编辑图像,通过指令修改人物属性,个性化文本到图像生成模型,支持AI变脸!艺术创作、虚拟形象定制以及影视制作
图像处理·人工智能·计算机视觉
白熊1882 小时前
【计算机视觉】基于深度学习的实时情绪检测系统:emotion-detection项目深度解析
人工智能·深度学习·计算机视觉