复现:latent diffusion(LDM)stable diffusion

复现LDM 已解决所有报错

下载项目

https://github.com/CompVis/latent-diffusion

然后运行环境配置:

复制代码
conda env create -f environment.yaml
conda activate ldm

下载预先训练的权重:

python 复制代码
下载官方权重文件:
mkdir -p models/ldm/text2img-large/
wget -O models/ldm/text2img-large/model.ckpt https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt

# 下载modelscope的权重文件:
# pip install modelscope
# modelscope download --model AI-ModelScope/stable-diffusion-v1-5 v1-5-pruned-emaonly.ckpt --local_dir ./models/ldm/stable-diffusion-v1-5
# 链接起来:
# ln -s /root/netdisk/latent-diffusion-main/models/ldm/stable-diffusion-v1-5/v1-5-pruned-emaonly.ckpt models/ldm/stable-diffusion-v1/model.ckpt
复制代码
# 1. 克隆 taming-transformers 仓库
git clone https://github.com/CompVis/taming-transformers.git
cd taming-transformers
安装 taming 模块
pip install .
返回项目根目录
cd /root/netdisk/latent-diffusion-main
直接引用taming包需要将下载的包放到固定的环境目录下:
cp -r /root/netdisk/latent-diffusion-main/taming-transformers /root/.pyenv/versions/3.8.0/lib/python3.8/site-packages
python -c "import taming-transformers; print(my_package.__file__)"

手动下载bert-base-uncased:https://huggingface.co/google-bert/bert-base-uncased/tree/main

修改代码:

复制代码
from transformers import BertTokenizerFast  # TODO: add to reuquirements
        # 从本地路径加载分词器
        self.tokenizer = BertTokenizerFast.from_pretrained("./bert-base-uncased")

运行采样生成:

复制代码
python scripts/txt2img.py --prompt "a virus monster is playing guitar, oil on canvas" --ddim_eta 0.0 --n_samples 4 --n_iter 4 --scale 5.0  --ddim_steps 50

python scripts/txt2img.py --prompt "Handsome man and beautiful woman walking in the rain, oil on canvas" --ddim_eta 0.0 --n_samples 4 --n_iter 4 --scale 5.0  --ddim_steps 50

效果展示:

相关推荐
媒体人88826 分钟前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
小菜AI科技39 分钟前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao3441 分钟前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
yzx9910131 小时前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI1 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
无规则ai2 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
zskj_zhyl2 小时前
家庭健康能量站:微高压氧舱结合艾灸机器人,智享双重养生SPA
人工智能·科技·安全·机器人
朗迪锋2 小时前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
网安INF3 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
l1t4 小时前
利用DeepSeek辅助WPS电子表格ET格式分析
人工智能·python·wps·插件·duckdb