2019年SEVC SCI1区TOP:维度学习粒子群算法TSLPSO,深度解析+性能实测传统粒子群算法(PSO)通过粒子根据个体最佳经验和种群最佳经验更新速度和位置,虽然这种学习机制简单易行,但容易产生振荡等问题。因此设计一种有效的学习策略,以克服这些问题并提高搜索效率,成为PSO研究中的重要课题。本文提出了一种基于粒子个人最佳经验维度学习策略(DLS),其用来发现并整合种群最佳解中的有前景信息。基于BLS,本文提出了双群学习粒子群算法(TSLPSO),该算法采用不同的学习策略:一个子群通过DLS构建学习示例来引导粒子的局部搜索,另一个子群则通过综合学习策略来引导全局搜索。