目录
1.摘要
由于道路曲率穿透和参数不确定性带来的侧向偏差,自动驾驶车辆控制器面临提供准确、快速响应及小幅超调等性能挑战。本文提出了一种基于维度狩猎学习(DLH)机制改进秃鹰搜索算法(IBES)。此外,通过基于Hermite-Biehler定理的频率域界限,优化模型预测控制(MPC)的调整,以适应AV速度和道路曲率的变化。
2.秃鹰搜索算法BES原理
3.改进策略
在秃鹰搜索(BES)算法中,秃鹰依靠先前所有解 P m e a n P_{mean} Pmean来构建新解,但这种方法导致收敛缓慢、容易陷入局部最优,并且早期失去多样性。为了解决这些问题,本文引入了一种基于维度学习的狩猎(DLH)策略,通过从邻近秃鹰的学习中更新每只秃鹰的位置。DLH策略为种群中每只秃鹰生成额外的候选解,并通过计算每只秃鹰当前位置与候选位置之间的欧几里得距离,以精细化搜索过程。
E i = ∥ P i -- P i -- B E S , n e w ∥ E_i=\|P_i--P_{i--BES,new}\| Ei=∥Pi--Pi--BES,new∥
根据欧几里得距离 E i E_i Ei,推导出每只秃鹰 P i P_i Pi的邻居 N i N_i Ni:
N i = { P j ∣ D i ( P i , P j ) ≤ N i , P j ∈ P o p u l a t i o n } N_i= \begin{Bmatrix} P_j|D_i\left(P_i,P_j\right)\leq N_i,P_j\in Population \end{Bmatrix} Ni={Pj∣Di(Pi,Pj)≤Ni,Pj∈Population}
其中, D i D_i Di 是 P i P_i Pi和 P j P_j Pj之间的欧几里得距离。通过邻居和随机选定的秃鹰学习得到的秃鹰 P i P_i Pi的新解决方案的每个维度将按照以下方式更新:
P i − D L H , n e w = P i + r a n d × ( P n − P r ) P_{i-DLH,new}=P_i+rand\times(P_n-P_r) Pi−DLH,new=Pi+rand×(Pn−Pr)
贪心保留:
P i , n e w = { P i − B E S , n e w , i f f ( P i − B E S ) < f ( P i − D L H ) P i − D L H , n e w , \left.P_{i,new}=\left\{ \begin{array} {c}P_{i-BES,new},iff(P_{i-BES})<f(P_{i-DLH}) \\ P_{i-DLH,new}, \end{array}\right.\right. Pi,new={Pi−BES,new,iff(Pi−BES)<f(Pi−DLH)Pi−DLH,new,
流程图
4.结果展示
5.参考文献
[1] Elsisi M, Essa M E S M. Improved bald eagle search algorithm with dimension learning-based hunting for autonomous vehicle including vision dynamics[J]. Applied Intelligence, 2023, 53(10): 11997-12014.