ES系列--打分机制

一、文档打分机制

当你通过关键字搜索相关文档时,可能会出现多个文档,这些文档的顺序是通过一个max_score属性的大小从高到低顺序展现出来的,max_score属性就是我们所说的评分。而这个评分是通过一个文档打分机制计算出来的。

二、打分原理

一、总公式

max_score = boost * idf * tf

其中,查询权重可以自己定义。

二、IDF与TF的计算

可以使用

GET /index/_search?explain=true

{

"query": {

"match": {

"text(这个是查询字段)": "hello"(这个是词条)

}

}

}

一、计算TF (词频)

Term Frequency : 搜索文本中的各个词条(term)在查询文本中出现了多少次, 出现次数越多,就越相关,得分会比较高

TF = freq / ( freq + k1 * ( 1 - b + b * dl / avgdl ))

freq:搜索的关键词在文档中出现的次数。

avgdl = fields / documents:

fields : 查询出来的所有文档的分解字段数量

documents:查询文档数量

dl:搜索的关键词再当前文档中分解的长度

二、 计算IDF(逆文档频率)

Inverse Document Frequency : 搜索文本中的各个词条(term)在整个索引的所有文档中 出现了多少次,出现的次数越多,说明越不重要,也就越不相关,得分就比较低。

log ( 1 + ( N - n + 0.5) / ( n + 0.5 ))

N:这个只是查询字段

n:文档中词条,也即查询的关键词的数量

注:这里的 log 是底数为 e 的对数

三、查询权重

我们可以通过控制查询权重来控制文档结果展现的顺序性。
GET /testscore/_search?explain=true

{

"query": {

"bool": {

"should": [{

"match": {

"title": {

"query": "Hadoop",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Hive",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Spark",

"boost": 2 // 通过查询权重来控制结果的顺序性

}

}

}

]

}

}

}

结果:

相关推荐
zskj_zhyl1 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
AllData公司负责人1 小时前
实时开发IDE部署指南
大数据·ide·开源
电商数据girl2 小时前
有哪些常用的自动化工具可以帮助处理电商API接口返回的异常数据?【知识分享】
大数据·分布式·爬虫·python·系统架构
ZeroNews内网穿透2 小时前
服装零售企业跨区域运营难题破解方案
java·大数据·运维·服务器·数据库·tcp/ip·零售
百胜软件@百胜软件2 小时前
重庆兰瓶×百胜软件正式签约,全渠道中台赋能美业新零售
大数据·零售
江瀚视野2 小时前
美团即时零售日订单突破1.2亿,即时零售生态已成了?
大数据·人工智能·零售
时序数据说3 小时前
IoTDB:专为物联网场景设计的高性能时序数据库
大数据·数据库·物联网·开源·时序数据库·iotdb
厚道3 小时前
ES查询性能优化
elasticsearch
阿里云大数据AI技术4 小时前
ODPS 15周年开发者活动|征文+动手实践双赛道开启,参与活动赢定制好礼!
大数据·人工智能·云计算
19H4 小时前
Flink-Source算子点位提交问题(Earliest)
大数据·flink