ES系列--打分机制

一、文档打分机制

当你通过关键字搜索相关文档时,可能会出现多个文档,这些文档的顺序是通过一个max_score属性的大小从高到低顺序展现出来的,max_score属性就是我们所说的评分。而这个评分是通过一个文档打分机制计算出来的。

二、打分原理

一、总公式

max_score = boost * idf * tf

其中,查询权重可以自己定义。

二、IDF与TF的计算

可以使用

GET /index/_search?explain=true

{

"query": {

"match": {

"text(这个是查询字段)": "hello"(这个是词条)

}

}

}

一、计算TF (词频)

Term Frequency : 搜索文本中的各个词条(term)在查询文本中出现了多少次, 出现次数越多,就越相关,得分会比较高

TF = freq / ( freq + k1 * ( 1 - b + b * dl / avgdl ))

freq:搜索的关键词在文档中出现的次数。

avgdl = fields / documents:

fields : 查询出来的所有文档的分解字段数量

documents:查询文档数量

dl:搜索的关键词再当前文档中分解的长度

二、 计算IDF(逆文档频率)

Inverse Document Frequency : 搜索文本中的各个词条(term)在整个索引的所有文档中 出现了多少次,出现的次数越多,说明越不重要,也就越不相关,得分就比较低。

log ( 1 + ( N - n + 0.5) / ( n + 0.5 ))

N:这个只是查询字段

n:文档中词条,也即查询的关键词的数量

注:这里的 log 是底数为 e 的对数

三、查询权重

我们可以通过控制查询权重来控制文档结果展现的顺序性。
GET /testscore/_search?explain=true

{

"query": {

"bool": {

"should": [{

"match": {

"title": {

"query": "Hadoop",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Hive",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Spark",

"boost": 2 // 通过查询权重来控制结果的顺序性

}

}

}

]

}

}

}

结果:

相关推荐
浪子小院1 小时前
ModelEngine 智能体全流程开发实战:从 0 到 1 搭建多协作办公助手
大数据·人工智能
闲人编程1 小时前
Elasticsearch搜索引擎集成指南
python·elasticsearch·搜索引擎·jenkins·索引·副本·分片
AEIC学术交流中心1 小时前
【快速EI检索 | ACM出版】2026年大数据与智能制造国际学术会议(BDIM 2026)
大数据·制造
wending-Y2 小时前
记录一次排查Flink一直重启的问题
大数据·flink
UI设计兰亭妙微2 小时前
医疗大数据平台电子病例界面设计
大数据·界面设计
先跑起来再说2 小时前
Git 入门到实战:一篇搞懂安装、命令、远程仓库与 IDEA 集成
ide·git·后端·elasticsearch·golang·intellij-idea
初恋叫萱萱2 小时前
模型瘦身实战:用 `cann-model-compression-toolkit` 实现高效 INT8 量化
大数据
互联网科技看点3 小时前
孕期科学补铁,保障母婴健康-仁合益康蛋白琥珀酸铁口服溶液成为产妇优选方案
大数据
Dxy12393102163 小时前
深度解析 Elasticsearch:从倒排索引到 DSL 查询的实战突围
大数据·elasticsearch·搜索引擎
YongCheng_Liang3 小时前
零基础学大数据:大数据基础与前置技术夯实
大数据·big data