ES系列--打分机制

一、文档打分机制

当你通过关键字搜索相关文档时,可能会出现多个文档,这些文档的顺序是通过一个max_score属性的大小从高到低顺序展现出来的,max_score属性就是我们所说的评分。而这个评分是通过一个文档打分机制计算出来的。

二、打分原理

一、总公式

max_score = boost * idf * tf

其中,查询权重可以自己定义。

二、IDF与TF的计算

可以使用

GET /index/_search?explain=true

{

"query": {

"match": {

"text(这个是查询字段)": "hello"(这个是词条)

}

}

}

一、计算TF (词频)

Term Frequency : 搜索文本中的各个词条(term)在查询文本中出现了多少次, 出现次数越多,就越相关,得分会比较高

TF = freq / ( freq + k1 * ( 1 - b + b * dl / avgdl ))

freq:搜索的关键词在文档中出现的次数。

avgdl = fields / documents:

fields : 查询出来的所有文档的分解字段数量

documents:查询文档数量

dl:搜索的关键词再当前文档中分解的长度

二、 计算IDF(逆文档频率)

Inverse Document Frequency : 搜索文本中的各个词条(term)在整个索引的所有文档中 出现了多少次,出现的次数越多,说明越不重要,也就越不相关,得分就比较低。

log ( 1 + ( N - n + 0.5) / ( n + 0.5 ))

N:这个只是查询字段

n:文档中词条,也即查询的关键词的数量

注:这里的 log 是底数为 e 的对数

三、查询权重

我们可以通过控制查询权重来控制文档结果展现的顺序性。
GET /testscore/_search?explain=true

{

"query": {

"bool": {

"should": [{

"match": {

"title": {

"query": "Hadoop",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Hive",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Spark",

"boost": 2 // 通过查询权重来控制结果的顺序性

}

}

}

]

}

}

}

结果:

相关推荐
APItesterCris7 分钟前
Node.js/Python 实战:编写一个淘宝商品数据采集器
大数据·开发语言·数据库·node.js
TDengine (老段)1 小时前
TDengine 数学函数 CEIL 用户手册
java·大数据·数据库·物联网·时序数据库·tdengine·涛思数据
Giser探索家1 小时前
建筑物孪生模型:重构空间数字化格局,赋能智慧城市
大数据·人工智能·算法·重构·分类·云计算·智慧城市
TDengine (老段)1 小时前
TDengine 浮点数新编码 BSS 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
TDengine (老段)1 小时前
TDengine 数学函数 ASIN() 用户手册
大数据·数据库·sql·物联网·时序数据库·tdengine·涛思数据
罗技1234 小时前
Elasticsearch、OpenSearch 与 Easysearch:三代搜索引擎的演化与抉择
大数据·elasticsearch·搜索引擎
非极限码农8 小时前
Apache Spark 上手指南(基于 Spark 3.5.0 稳定版)
大数据·spark·apache
Guheyunyi10 小时前
消防管理系统如何重构现代空间防御体系
大数据·运维·人工智能·安全·信息可视化·重构
二进制_博客12 小时前
spark on hive 还是 hive on spark?
大数据·hive·spark
智海观潮12 小时前
Spark RDD详解 —— RDD特性、lineage、缓存、checkpoint、依赖关系
大数据·缓存·spark