ES系列--打分机制

一、文档打分机制

当你通过关键字搜索相关文档时,可能会出现多个文档,这些文档的顺序是通过一个max_score属性的大小从高到低顺序展现出来的,max_score属性就是我们所说的评分。而这个评分是通过一个文档打分机制计算出来的。

二、打分原理

一、总公式

max_score = boost * idf * tf

其中,查询权重可以自己定义。

二、IDF与TF的计算

可以使用

GET /index/_search?explain=true

{

"query": {

"match": {

"text(这个是查询字段)": "hello"(这个是词条)

}

}

}

一、计算TF (词频)

Term Frequency : 搜索文本中的各个词条(term)在查询文本中出现了多少次, 出现次数越多,就越相关,得分会比较高

TF = freq / ( freq + k1 * ( 1 - b + b * dl / avgdl ))

freq:搜索的关键词在文档中出现的次数。

avgdl = fields / documents:

fields : 查询出来的所有文档的分解字段数量

documents:查询文档数量

dl:搜索的关键词再当前文档中分解的长度

二、 计算IDF(逆文档频率)

Inverse Document Frequency : 搜索文本中的各个词条(term)在整个索引的所有文档中 出现了多少次,出现的次数越多,说明越不重要,也就越不相关,得分就比较低。

log ( 1 + ( N - n + 0.5) / ( n + 0.5 ))

N:这个只是查询字段

n:文档中词条,也即查询的关键词的数量

注:这里的 log 是底数为 e 的对数

三、查询权重

我们可以通过控制查询权重来控制文档结果展现的顺序性。
GET /testscore/_search?explain=true

{

"query": {

"bool": {

"should": [{

"match": {

"title": {

"query": "Hadoop",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Hive",

"boost": 1

}

}

},

{

"match": {

"title": {

"query": "Spark",

"boost": 2 // 通过查询权重来控制结果的顺序性

}

}

}

]

}

}

}

结果:

相关推荐
延凡科技2 分钟前
延凡 APM 应用性能管理系统:AI+eBPF 驱动全栈智能可观测
大数据·人工智能·科技·能源
新诺韦尔API7 分钟前
手机空号检测接口和手机号状态查询接口有什么区别?
大数据·智能手机·api
易连EDI—EasyLink9 分钟前
EDI数据交换2026年展望:洞察2026年EDI数据交换的新范式
大数据·人工智能·edi·电子数据交换·as2
破烂pan14 分钟前
Elasticsearch 8.x + Python 官方客户端实战教程
python·elasticsearch
五度易链-区域产业数字化管理平台24 分钟前
五度易链产业大脑:从数据融合到智能决策的技术实践
大数据·人工智能
赵谨言25 分钟前
基于OpenCV的人脸五官识别系统研究
大数据·开发语言·经验分享·python
武子康40 分钟前
大数据-187 Logstash Filter 插件实战:grok 解析控制台与 Nginx 日志(7.3.0 配置可复用)
大数据·后端·logstash
老蒋新思维1 小时前
创客匠人:工作流嵌入式智能体,重构知识变现的效率底层
大数据·服务器·人工智能·重构·创始人ip·创客匠人·知识变现
TDengine (老段)1 小时前
开放生态破局工业大数据困局:TDengine 的迭代升级与全链路数据自由流动
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
Jackyzhe1 小时前
Flink源码阅读:状态管理
大数据·flink