OpenCv之图像轮廓

目录

一、图像轮廓定义

二、绘制轮廓

三、计算轮廓面积与周长


一、图像轮廓定义

图像轮廓是具有相同颜色或灰度的连续带你的曲线.轮廓在形状分析和物体的检测和识别中很有用

轮廓的作用:

  • 用于图形分析
  • 物体的识别与检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化或Canny操作
  • 画轮廓是会修改输入的图像,如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

案例代码如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
print(contours)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()

二、绘制轮廓

参照函数:

代码案例如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
# print(contours)

# 绘制轮廓会直接修改原图
# 如果想保持原图不变,建议copy一份
img_copy = img.copy()
cv2.drawContours(img_copy,contours,-1,(0,0,255),2)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()

三、计算轮廓面积与周长

轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素

案例代码如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓会直接修改原图
# 如果想保持原图不变,建议copy一份
img_copy = img.copy()
cv2.drawContours(img_copy,contours,1,(0,0,255),2)

# 计算轮廓面积
area = cv2.contourArea(contours[1])

# 计算轮廓周长
perimeter = cv2.arcLength(contours[1],closed=True)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
Codebee36 分钟前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º1 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys1 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子1 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144872 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile2 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造