OpenCv之图像轮廓

目录

一、图像轮廓定义

二、绘制轮廓

三、计算轮廓面积与周长


一、图像轮廓定义

图像轮廓是具有相同颜色或灰度的连续带你的曲线.轮廓在形状分析和物体的检测和识别中很有用

轮廓的作用:

  • 用于图形分析
  • 物体的识别与检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化或Canny操作
  • 画轮廓是会修改输入的图像,如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

案例代码如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
print(contours)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()

二、绘制轮廓

参照函数:

代码案例如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
# print(contours)

# 绘制轮廓会直接修改原图
# 如果想保持原图不变,建议copy一份
img_copy = img.copy()
cv2.drawContours(img_copy,contours,-1,(0,0,255),2)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()

三、计算轮廓面积与周长

轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素

案例代码如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓会直接修改原图
# 如果想保持原图不变,建议copy一份
img_copy = img.copy()
cv2.drawContours(img_copy,contours,1,(0,0,255),2)

# 计算轮廓面积
area = cv2.contourArea(contours[1])

# 计算轮廓周长
perimeter = cv2.arcLength(contours[1],closed=True)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
GEO AI搜索优化助手20 分钟前
AI搜索革命:营销新纪元,GEO时代生成式AI重构搜索
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
丝瓜蛋汤1 小时前
NCE(noise contrastive estimation)loss噪声对比估计损失和InfoNCE loss
人工智能
DeepVis Research1 小时前
【AGI Safety/Robotics】2026年度 AGI 对抗性强化学习与软体机器人控制基准索引 (Skynet/Legion Core)
人工智能·网络安全·机器人·数据集·强化学习
Tipriest_7 小时前
torch训练出的模型的组成以及模型训练后的使用和分析办法
人工智能·深度学习·torch·utils
QuiteCoder8 小时前
深度学习的范式演进、架构前沿与通用人工智能之路
人工智能·深度学习
周名彥8 小时前
### 天脑体系V∞·13824D完全体终极架构与全域落地研究报告 (生物计算与隐私计算融合版)
人工智能·神经网络·去中心化·量子计算·agi
MoonBit月兔8 小时前
年终 Meetup:走进腾讯|AI 原生编程与 Code Agent 实战交流会
大数据·开发语言·人工智能·腾讯云·moonbit
大模型任我行8 小时前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
weixin_468466859 小时前
YOLOv13结合代码原理详细解析及模型安装与使用
人工智能·深度学习·yolo·计算机视觉·图像识别·目标识别·yolov13
蹦蹦跳跳真可爱5899 小时前
Python----大模型(GPT-2模型训练加速,训练策略)
人工智能·pytorch·python·gpt·embedding