OpenCv之图像轮廓

目录

一、图像轮廓定义

二、绘制轮廓

三、计算轮廓面积与周长


一、图像轮廓定义

图像轮廓是具有相同颜色或灰度的连续带你的曲线.轮廓在形状分析和物体的检测和识别中很有用

轮廓的作用:

  • 用于图形分析
  • 物体的识别与检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化或Canny操作
  • 画轮廓是会修改输入的图像,如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

案例代码如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
print(contours)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()

二、绘制轮廓

参照函数:

代码案例如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 打印轮廓
# print(contours)

# 绘制轮廓会直接修改原图
# 如果想保持原图不变,建议copy一份
img_copy = img.copy()
cv2.drawContours(img_copy,contours,-1,(0,0,255),2)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()

三、计算轮廓面积与周长

轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素

案例代码如下:

python 复制代码
import cv2
import numpy as np

# 该图像显示效果是黑白的,但是实际上确实三个通道的彩色图像
img = cv2.imread('6.jpg')

# 变成单通道的黑白图片
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 二值化,注意有两个返回值,阈值和结果
ret,binary = cv2.threshold(gray,150,255,cv2.THRESH_BINARY)

# 轮廓查找,新版本返回两个结果,轮廓和层级,老版本返回三个 参数,图像,轮廓和层级
result,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓会直接修改原图
# 如果想保持原图不变,建议copy一份
img_copy = img.copy()
cv2.drawContours(img_copy,contours,1,(0,0,255),2)

# 计算轮廓面积
area = cv2.contourArea(contours[1])

# 计算轮廓周长
perimeter = cv2.arcLength(contours[1],closed=True)

# 释放资源
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
kalvin_y_liu5 分钟前
智能体框架大PK!谷歌ADK VS 微软Semantic Kernel
人工智能·microsoft·谷歌·智能体
爱看科技8 分钟前
智能眼镜行业腾飞在即,苹果/微美全息锚定“AR+AI眼镜融合”之路抢滩市场!
人工智能·ar
星期天要睡觉32 分钟前
计算机视觉(opencv)——基于 OpenCV DNN 的实时人脸检测 + 年龄与性别识别
opencv·计算机视觉·dnn
Juchecar3 小时前
LLM模型与ML算法之间的关系
人工智能
FIN66683 小时前
昂瑞微:深耕射频“芯”赛道以硬核实力冲刺科创板大门
前端·人工智能·科技·前端框架·信息与通信·智能
benben0443 小时前
京东agent之joyagent解读
人工智能
LONGZETECH3 小时前
【龙泽科技】汽车动力与驱动系统综合分析技术1+X仿真教学软件(1.1.3 -初级)
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
lisw053 小时前
SolidWorks:现代工程设计与数字制造的核心平台
人工智能·机器学习·青少年编程·软件工程·制造
大刘讲IT3 小时前
AI 生产工艺参数优化:中小型制造企业用 “智能调参“ 提升产品合格率与生产效率
人工智能·制造
图欧学习资源库3 小时前
人工智能领域、图欧科技、IMYAI智能助手2025年9月更新月报
人工智能·科技