回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)

回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)

文章目录

    • [回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)](#回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数))

预测效果





基本介绍

GRU神经网络是LSTM神经网络的一种变体,LSTM 神经网

络是在RNN的基础上发展起来的。RNN是一种成熟的机器学习方法,在处理时序数列方面具有着很大优势。RNN中包含信号反馈结构,能将t时刻的输出信息与t时刻之前的信息相关联,具有动态特征和记忆功能。

  • RNN结构包括输入层、隐藏层和输出层,其中隐藏层包含反馈结构;
  • t时刻的输出值是该时刻及其之前时刻的输入信息共同作用的结果;
  • RNN能够有效地分析和处理较短的时序数列,但不能分析和处理维
    度过长的时序数列,否则会产生"梯度消失"或"梯度爆炸"的现象。
  • 针对这一问题,H等提出了一种RNN改进结构LSTM神经网络,其隐藏层结构如图示。
  • LSTM神经网络基于隐藏层中的记忆单元(遗忘门、输入门和输出门)实现时序上的记忆可控,改善了RNN长期记忆力不足的问题,但其隐藏层的结构过于复杂,样本训练需要花费大量的时间。
  • 基于LSTM神经网络,cho等提出了GRU神经网络,利用重置门和更新门代替LSTM神经网络中的遗忘门、输入门和输出门。LSTM神经网络和GRU神经网络在隐藏层内具有相似的数据流,但GRU神经网络中没有单独的存储单元,因此样本训练效率更高。
  • GRU神经网络的隐藏层结构示意图。由图可见:更新门控制前一时刻的信息对当前时刻的影响程度,更新门的值越大,前一时刻的信息对当
    前时刻的影响越小;重置门控制对前一时刻信息的接收百分比,重置门的值越大,对前一时刻的信息接收的越多。

程序设计

  • 完整源码和数据获取方式1:私信博主回复** MATLAB实现GRU(门控循环单元)多输入单输出(不调用工具箱函数)**获取。
  • 完整源码和数据获取方式2:订阅《GRU门控循环单元》专栏,订阅后两天内私信博主获取程序和数据,专栏外只能获取该程序。
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%-------------------------------------------------------------------------------------
%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
%-------------------------------------------------------------------------------------
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%-------------------------------------------------------------------------------------
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%  MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129252252 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128172453

相关推荐
cwn_5 小时前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
长相忆兮长相忆1 天前
【机器学习】保序回归平滑校准算法
人工智能·机器学习·回归
微光-沫年3 天前
141-CEEMDAN-VMD-Transformer-BiLSTM-ABKDE多变量区间预测模型!
算法·matlab·回归
路溪非溪4 天前
机器学习:更多分类回归算法之决策树、SVM、KNN
机器学习·分类·回归
巴伦是只猫6 天前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
IT古董7 天前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
机器学习之心7 天前
顶级SCI极光优化算法!PLO-Transformer-GRU多变量时间序列预测,Matlab实现
gru·多变量时间序列预测·顶级sci极光优化算法·plo-transformer
IT古董8 天前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(3)决策树回归模型(Decision Tree Regression)
神经网络·机器学习·回归
.30-06Springfield10 天前
利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
人工智能·pytorch·python·rnn·分类·gru·lstm
suixinm19 天前
LSTM、GRU 与 Transformer网络模型参数计算
gru·lstm·transformer