用pytorch进行BERT文本分类

BERT 是一个强大的语言模型,至少有两个原因:

  1. 它使用从 BooksCorpus (有 8 亿字)和 Wikipedia(有 25 亿字)中提取的未标记数据进行预训练。
  2. 顾名思义,它是通过利用编码器堆栈的双向特性进行预训练的。这意味着 BERT 不仅从左到右,而且从右到左从单词序列中学习信息。

BERT 模型需要一系列 tokens (words) 作为输入。在每个token序列中,BERT 期望输入有两个特殊标记:

  • [CLS] :这是每个sequence的第一个token,代表分类token。
  • [SEP] :这是让BERT知道哪个token属于哪个序列的token。这一特殊表征法主要用于下一个句子预测任务或问答任务。如果我们只有一个sequence,那么这个token将被附加到序列的末尾。

就像Transformer的普通编码器一样,BERT 将一系列单词作为输入,这些单词不断向上流动。每一层都应用自我注意,并将其结果通过前馈网络传递,然后将其传递给下一个编码器。

BERT 输出

每个位置输出一个大小为 hidden_ size的向量(BERT Base 中为 768)。对于我们在上面看到的句子分类示例,我们只关注第一个位置的输出(将特殊的 [CLS] token 传递到该位置)。

该向量现在可以用作我们选择的分类器的输入。该论文仅使用单层神经网络作为分类器就取得了很好的效果。

使用 BERT 进行文本分类

本文的主题是用 BERT 对文本进行分类。

在这篇文章中,我们将使用kaggle上的BBC 新闻分类数据集。

数据集已经是 CSV 格式,它有 2126 个不同的文本,每个文本都标记在 5 个类别中的一个之下:

sport(体育),business(商业),politics(政治),tech(科技),entertainment(娱乐)。


模型下载 https://huggingface.co/bert-base-cased/tree/main

数据集下载 bbc-news https://huggingface.co/datasets/SetFit/bbc-news/tree/main

有4个400多MB的文件,pytorch的模型对应的是436MB的那个文件。

需要安装transforms库

pip install transforms 

全部的流程代码:

python 复制代码
# 全部流程代码
import numpy as np
import torch
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
labels = {'business':0,
          'entertainment':1,
          'sport':2,
          'tech':3,
          'politics':4
          }

class Dataset(torch.utils.data.Dataset):
    def __init__(self, df):
        self.labels = [labels[label] for label in df['category']]
        self.texts = [tokenizer(text, 
                                padding='max_length', 
                                max_length = 512, 
                                truncation=True,
                                return_tensors="pt") 
                      for text in df['text']]

    def classes(self):
        return self.labels

    def __len__(self):
        return len(self.labels)

    def get_batch_labels(self, idx):
        # Fetch a batch of labels
        return np.array(self.labels[idx])

    def get_batch_texts(self, idx):
        # Fetch a batch of inputs
        return self.texts[idx]

    def __getitem__(self, idx):
        batch_texts = self.get_batch_texts(idx)
        batch_y = self.get_batch_labels(idx)
        return batch_texts, batch_y


# 数据集准备
# 拆分训练集、验证集和测试集 8:1:1
import pandas as pd
bbc_text_df = pd.read_csv('./bbc-news/bbc-text.csv')
# bbc_text_df.head()
df = pd.DataFrame(bbc_text_df)
np.random.seed(112)
df_train, df_val, df_test = np.split(df.sample(frac=1, random_state=42), [int(.8*len(df)), int(.9*len(df))])
print(len(df_train),len(df_val), len(df_test))
# 1780 222 223



# 构建模型
from torch import nn
from transformers import BertModel

class BertClassifier(nn.Module):
    def __init__(self, dropout=0.5):
        super(BertClassifier, self).__init__()
        self.bert = BertModel.from_pretrained('bert-base-cased')
        self.dropout = nn.Dropout(dropout)
        self.linear = nn.Linear(768, 5)
        self.relu = nn.ReLU()

    def forward(self, input_id, mask):
        _, pooled_output = self.bert(input_ids= input_id, attention_mask=mask,return_dict=False)
        dropout_output = self.dropout(pooled_output)
        linear_output = self.linear(dropout_output)
        final_layer = self.relu(linear_output)
        return final_layer

#从上面的代码可以看出,BERT Classifier 模型输出了两个变量:
#1. 在上面的代码中命名的第一个变量_包含sequence中所有 token 的 Embedding 向量层。
#2. 命名的第二个变量pooled_output包含 [CLS] token 的 Embedding 向量。对于文本分类任务,使用这个 Embedding 作为分类器的输入就足够了。
# 然后将pooled_output变量传递到具有ReLU激活函数的线性层。在线性层中输出一个维度大小为 5 的向量,每个向量对应于标签类别(运动、商业、政治、 娱乐和科技)。



from torch.optim import Adam
from tqdm import tqdm

def train(model, train_data, val_data, learning_rate, epochs):
    # 通过Dataset类获取训练和验证集
    train, val = Dataset(train_data), Dataset(val_data)
    # DataLoader根据batch_size获取数据,训练时选择打乱样本
    train_dataloader = torch.utils.data.DataLoader(train, batch_size=2, shuffle=True)
    val_dataloader = torch.utils.data.DataLoader(val, batch_size=2)
    # 判断是否使用GPU
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    # 定义损失函数和优化器
    criterion = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=learning_rate)

    if use_cuda:
            model = model.cuda()
            criterion = criterion.cuda()
    # 开始进入训练循环
    for epoch_num in range(epochs):
            # 定义两个变量,用于存储训练集的准确率和损失
            total_acc_train = 0
            total_loss_train = 0
            # 进度条函数tqdm
            for train_input, train_label in tqdm(train_dataloader):
                train_label = train_label.to(device)
                mask = train_input['attention_mask'].to(device)
                input_id = train_input['input_ids'].squeeze(1).to(device)
                # 通过模型得到输出
                output = model(input_id, mask)
                # 计算损失
                batch_loss = criterion(output, train_label)
                total_loss_train += batch_loss.item()
                # 计算精度
                acc = (output.argmax(dim=1) == train_label).sum().item()
                total_acc_train += acc
                # 模型更新
                model.zero_grad()
                batch_loss.backward()
                optimizer.step()
            # ------ 验证模型 -----------
            # 定义两个变量,用于存储验证集的准确率和损失
            total_acc_val = 0
            total_loss_val = 0
            # 不需要计算梯度
            with torch.no_grad():
                # 循环获取数据集,并用训练好的模型进行验证
                for val_input, val_label in val_dataloader:
                    # 如果有GPU,则使用GPU,接下来的操作同训练
                    val_label = val_label.to(device)
                    mask = val_input['attention_mask'].to(device)
                    input_id = val_input['input_ids'].squeeze(1).to(device)
  
                    output = model(input_id, mask)

                    batch_loss = criterion(output, val_label)
                    total_loss_val += batch_loss.item()
                    
                    acc = (output.argmax(dim=1) == val_label).sum().item()
                    total_acc_val += acc
            
            print(
                f'''Epochs: {epoch_num + 1} 
              | Train Loss: {total_loss_train / len(train_data): .3f} 
              | Train Accuracy: {total_acc_train / len(train_data): .3f} 
              | Val Loss: {total_loss_val / len(val_data): .3f} 
              | Val Accuracy: {total_acc_val / len(val_data): .3f}''') 

#我们对模型进行了 5 个 epoch 的训练,我们使用 Adam 作为优化器,而学习率设置为1e-6。
#因为本案例中是处理多类分类问题,则使用分类交叉熵作为我们的损失函数。
EPOCHS = 5
model = BertClassifier()
LR = 1e-6
train(model, df_train, df_val, LR, EPOCHS)



# 测试模型
def evaluate(model, test_data):
    test = Dataset(test_data)
    test_dataloader = torch.utils.data.DataLoader(test, batch_size=2)
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    if use_cuda:
        model = model.cuda()

    total_acc_test = 0
    with torch.no_grad():
        for test_input, test_label in test_dataloader:
              test_label = test_label.to(device)
              mask = test_input['attention_mask'].to(device)
              input_id = test_input['input_ids'].squeeze(1).to(device)
              output = model(input_id, mask)
              acc = (output.argmax(dim=1) == test_label).sum().item()
              total_acc_test += acc
    print(f'Test Accuracy: {total_acc_test / len(test_data): .3f}')

# 用测试数据集进行测试    
evaluate(model, df_test)
python 复制代码
EPOCHS = 5
model = BertClassifier()
LR = 1e-6
train(model, df_train, df_val, LR, EPOCHS)

在训练的这一步会非常耗时间,用GPU加速了,也需要大概39分钟.

因为BERT模型本身就是一个比较大的模型,参数非常多。

最后一步测试的时候,测试的准确率还是比较高的。达到 99.6%

模型的保存。这个在原文里面是没有提到的。

我们花了很多时间训练的模型如果不保存一下,下次还要重新训练岂不是费时费力?

python 复制代码
# 保存模型
torch.save(model.state_dict(),"bertMy.pth")
# load 加载模型
model = BertClassifier()
model.load_state_dict(torch.load("bertMy.pth"))

可以用下面的代码查看model里面的模型。

python 复制代码
for param_tensor in model.state_dict():
    print(param_tensor, "\t", model.state_dict()[param_tensor].size())

也可以将保存的模型文件 bertMy.pth上传到netron网站进行模型可视化。Netronhttps://netron.app/

原文位于这个地址,但是原文中的代码缺了读csv那一段 :

保姆级教程,用PyTorch和BERT进行文本分类 - 知乎

相关推荐
冷眼看人间恩怨1 分钟前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041082 分钟前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌1 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型