神经网络学习小记录74——Pytorch 设置随机种子Seed来保证训练结果唯一

神经网络学习小记录74------Pytorch 设置随机种子Seed来保证训练结果唯一

学习前言

好多同学每次训练结果不同,最大的指标可能会差到3-4%这样,这是因为随机种子没有设定导致的,我们一起看看怎么设定吧。

为什么每次训练结果不同

模型训练中存在很多随机值,最常见的有:

1、随机权重,网络有些部分的权重没有预训练,它的值则是随机初始化的,每次随机初始化不同会导致结果不同。

2、随机数据增强,一般来讲网络训练会进行数据增强,特别是少量数据的情况下,数据增强一般会随机变化光照、对比度、扭曲等,也会导致结果不同。

3、随机数据读取,喂入训练数据的顺序也会影响结果。

......

应该还有别的随机值,这里不一一列出,这些随机都很容易影响网络的训练结果。

如果能够固定权重、固定数据增强情况、固定数据读取顺序,网络理论上每一次独立训练的结果都是一样的。

什么是随机种子

随机种子(Random Seed)是计算机专业术语。一般计算机的随机数都是伪随机数,以一个真随机数(种子)作为初始条件,然后用一定的算法不停迭代产生随机数。

按照这个理解,我们如果可以设置最初的 真随机数(种子),那么后面出现的随机数将会是固定序列。

以random库为例,我们使用如下的代码,前两次为随机生成,后两次为设置随机数生成器种子后生成。

python 复制代码
import random

# 生成随机整数
print("第一次随机生成")
print(random.randint(1,100))
print(random.randint(1,100))

# 生成随机整数
print("第二次随机生成")
print(random.randint(1,100))
print(random.randint(1,100))

# 设置随机数生成器种子
random.seed(11)

# 生成随机整数
print("第一次设定种子后随机生成")
print(random.randint(1,100))
print(random.randint(1,100))

# 重置随机数生成器种子
random.seed(11)

# 生成随机整数
print("第二次设定种子后随机生成")
print(random.randint(1,100))
print(random.randint(1,100))

结果如下,前两次随机生成的序列不同,后两次设定种子后随机生成的序列相同:

cmd 复制代码
第一次随机生成
66
37
第二次随机生成
93
56
第一次设定种子后随机生成
58
72
第二次设定种子后随机生成
58
72

训练中设置随机种子

一般训练会用到多个库包含有关random的内容。

在pytorch构建的网络中,一般都是使用下面三个库来获得随机数,我们需要对三个库都设置随机种子:

1、torch库;

2、numpy库;

3、random库。

在这里写了一个函数:

python 复制代码
#---------------------------------------------------#
#   设置种子
#---------------------------------------------------#
def seed_everything(seed=11):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

这里面写到了cuda、cudnn这类gpu才会用到的东西,实测发现cpu版本的pytorch也可以正常运行。

torch.backends.cudnn.deterministic=True用于保证CUDA 卷积运算的结果确定。

torch.backends.cudnn.benchmark=False是用于保证数据变化的情况下,减少网络效率的变化。为True的话容易降低网络效率。

只需要在所有初始化前,调用该seed初始化函数即可。

另外,Pytorch一般使用Dataloader来加载数据,Dataloader一般会使用多worker加载多进程来加载数据,此时我们需要使用Dataloader自带的worker_init_fn函数初始化Dataloader启动的多进程,这样才能保证多进程数据加载时数据的确定性。

python 复制代码
#---------------------------------------------------#
#   设置Dataloader的种子
#---------------------------------------------------#
def worker_init_fn(worker_id, rank, seed):
    worker_seed = rank + seed
    random.seed(worker_seed)
    np.random.seed(worker_seed)
    torch.manual_seed(worker_seed)
相关推荐
民乐团扒谱机2 小时前
实验室安全教育与管理平台学习记录(七)网络安全
学习·安全·web安全
蒙奇D索大2 小时前
【11408学习记录】考研英语长难句精析:三步拆解真题复杂结构,轻松攻克阅读难关!
笔记·学习·考研·改行学it
zd2005723 小时前
AI辅助数据分析和学习了没?
人工智能·学习
洛白白3 小时前
“职场心态与心穷
经验分享·学习·生活·学习方法
_dindong4 小时前
笔试强训:Week-4
数据结构·c++·笔记·学习·算法·哈希算法·散列表
Sunhen_Qiletian5 小时前
Python 类继承详解:深度学习神经网络架构的构建艺术
python·深度学习·神经网络
LHZSMASH!5 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
DKPT5 小时前
如何设置JVM参数避开直接内存溢出的坑?
java·开发语言·jvm·笔记·学习
一 乐5 小时前
智慧党建|党务学习|基于SprinBoot+vue的智慧党建学习平台(源码+数据库+文档)
java·前端·数据库·vue.js·spring boot·学习
Dfreedom.5 小时前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数