Python探索金融数据进行时间序列分析和预测

大家好,时间序列分析是一种基于历史数据和趋势分析进行预测的统计技术。它在金融和经济领域非常普遍,因为它可以准确预测趋势并做出明智的决策。本文将使用Python来探索经济和金融数据,执行统计分析,并创建时间序列预测。

我们将在本教程中使用NumPy、Pandas和Matplotlib等不同的Python库,此外还将介绍yfinance库,并使用它来从Yahoo Finance下载金融数据。

安装库

在开始之前,安装必要的库,打开终端并运行以下命令:

python 复制代码
pip install pandas numpy matplotlib yfinance

接下来,打开一个新的Jupyter Notebook或选择的任何Python环境,开始实现代码。

数据收集

为了演示如何使用Python进行时间序列分析和预测,将使用微软公司的每日调整收盘价,这些数据由Yahoo Finance提供。在下载数据之前,导入所需的库:

python 复制代码
import pandas as pd
import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt

# 设置可视化的样式。
plt.style.use('fivethirtyeight')

接下来,定义微软公司的代码、开始和结束日期。

python 复制代码
# 定义代码并下载数据。
MSFT = yf.download('MSFT', start='2010-01-01', end='2022-06-30')

yfinance库提供了一种简单的方法来下载特定代码的金融数据,开始和结束日期表示我们要下载的数据时间段,本文为2010年1月至2022年6月。

探索性数据分析

现在已经下载了数据,然后探索一下数据以更好地了解它的结构和特征,可以使用Pandas来分析数据。

python 复制代码
# 显示数据的前5行。
print(MSFT.head())

# 显示数据的统计摘要。
print(MSFT.describe())

第一行代码将数据的前5行输出到控制台。它给我们一个快速查看数据的结构------显示日期、开盘价、最高价、最低价、收盘价和调整后的收盘价。

第二行代码提供了数据的统计摘要,显示计数、平均值、标准差、最小值、最大值和四分位数值。

接下来,让我们绘制每日调整后的收盘价,使数据可视化。

python 复制代码
# 绘制微软公司的调整后收盘价。
plt.figure(figsize=(12,6))
plt.plot(MSFT['Adj Close'], label='Adjusted Close')
plt.title('Microsoft Adjusted Close Price')
plt.xlabel('Date')
plt.ylabel('Adjusted Close Price ($)')
plt.legend(loc='upper left')
plt.xticks(rotation=45)
plt.show()

时间序列分析

接下来需要进行时间序列分析,以深入了解数据的时间行为。自相关函数(ACF)和偏自相关函数(PACF)用于识别连续观测值和预测值之间的关系,可以使用statsmodels库来计算ACF和PACF。

python 复制代码
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# 绘制自相关和偏自相关函数
fig, ax = plt.subplots(2, figsize=(12,6))
plot_acf(MSFT['Adj Close'], lags=20, ax=ax[0])
plot_pacf(MSFT['Adj Close'], lags=20, ax=ax[1])
plt.show()

上面的代码绘制了微软公司调整后的收盘价的ACF和PACF,滞后期最长为20。

从ACF图中,我们可以观察到自相关值在缓慢下降。PACF图表明只有在滞后1时期,才存在显著的自相关性,这表明第一个滞后期或时间段与当前观察值具有最强的相关性。

预测

现在我们已经分析了数据并了解了其结构和趋势,让我们使用Prophet库进行一些预测。

python 复制代码
pip install prophet
from prophet import Prophet

首先,我们将创建一个新的DataFrame,仅捕获我们分析所需的列。

python 复制代码
# 创建一个新的DataFrame
data = MSFT.loc[:, ['Adj Close']]
data.head()

接下来,我们将重命名列以适应Prophet的命名约定。

python 复制代码
# 重命名列以适应Prophet的命名约定
data = data.reset_index()
data = data.rename(columns={'Date':'ds', 'Adj Close':'y'})
data.head()

上述代码将DataFrame中必要的列重命名以适应Prophet的命名约定,ds列表示日期,而y列表示我们要预测的值。

现在,我们将数据拆分为训练集和测试集,并使用Prophet库进行预测。

python 复制代码
train_data = data[data['ds'] < '2021-07-01']
test_data = data[data['ds'] >= '2021-07-01']

# 创建模型并拟合训练数据
model = Prophet()
model.fit(train_data)

# 定义一个与预测范围一致的新的DataFrame
future = test_data[['ds']]
forecast = model.predict(future)

# 绘制预测图
model.plot(forecast)
plt.title('Microsoft Adjusted Close Price: Actual vs. Forecast')
plt.xlabel('Date')
plt.ylabel('Adjusted Close Price ($)')
plt.show()

上述代码创建了一个Prophet模型并拟合训练数据,未来的DataFrame用ds列表示我们的预测日期。然后我们进行预测,并将结果保存在forecast DataFrame中,最后使用模型的plot()函数绘制预测图。

总结

时间序列分析和预测是获得不同领域数据洞察力的重要统计技术。本文从雅虎金融收集数据,并使用Python进行数据分析,包括探索性数据分析和预测。

本文演示了各种可视化技术,例如绘制移动平均线、ACF和PACF图,同时还进行了时间序列预测,这在金融和经济中是做出明智的投资决策所必需的。

相关推荐
weixin_472339463 小时前
高效处理大体积Excel文件的Java技术方案解析
java·开发语言·excel
枯萎穿心攻击3 小时前
响应式编程入门教程第二节:构建 ObservableProperty<T> — 封装 ReactiveProperty 的高级用法
开发语言·unity·c#·游戏引擎
Eiceblue5 小时前
【免费.NET方案】CSV到PDF与DataTable的快速转换
开发语言·pdf·c#·.net
m0_555762905 小时前
Matlab 频谱分析 (Spectral Analysis)
开发语言·matlab
浪裡遊6 小时前
React Hooks全面解析:从基础到高级的实用指南
开发语言·前端·javascript·react.js·node.js·ecmascript·php
烛阴7 小时前
简单入门Python装饰器
前端·python
lzb_kkk7 小时前
【C++】C++四种类型转换操作符详解
开发语言·c++·windows·1024程序员节
好开心啊没烦恼7 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
面朝大海,春不暖,花不开8 小时前
使用 Python 实现 ETL 流程:从文本文件提取到数据处理的全面指南
python·etl·原型模式
简佐义的博客8 小时前
破解非模式物种GO/KEGG注释难题
开发语言·数据库·后端·oracle·golang