大数据篇Kafka消息队列指定Topic打印Key、Value、Offset和Partition

1、概念简介

说到Apache Kafka消息传递系统时,以下是一些关键概念的解释:

Key(键):Kafka消息由Key和Value组成。Key是一个可选的字段,它通常用于消息的路由和分区策略。Key的目的是确保具有相同Key的消息被写入同一个分区。当消费者接收到消息时,可以使用Key来进行消息处理和路由操作。在某些情况下,Key还可以用于数据合并和聚合。

Value(值):Value是Kafka消息中包含的实际数据。它可以是任何形式的字节流,没有特定的格式要求。Value可以是文本、二进制数据、JSON、XML或任何其他格式的信息。消费者通常根据Value进行业务逻辑处理。

Offset(偏移量):Offset是一个用来唯一标识Kafka分区中每条消息的数字。每个分区都有自己的Offset序列,并且它们是连续递增的。Offset的作用是跟踪每个消费者在分区中的处理位置。当消费者读取消息时,它会保存最后处理的Offset,以便在下次读取消息时从正确的位置开始。

Partition(分区):Kafka将主题划分为多个分区,每个分区是一个有序的、持久化的日志文件。分区使得Kafka能够实现高吞吐量和水平扩展。在生产者写入消息时,Kafka会根据特定的分区策略将消息写入到合适的分区中。每个分区都有自己的一系列Offset,并且可以被独立地读取和复制。

总结起来,Kafka的消息由Key和Value组成,Key用于路由和分区策略,Value是实际的消息数据。每个消息都有一个唯一的Offset,用于跟踪消费者在分区中的处理位置。而分区则允许Kafka实现高吞吐量和扩展性。

2、代码实现

写一段代码打印一下当前Kafka队列中指定一个Topic,打印Key、Value、Offset和Partition

scala 复制代码
package test.scala;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Collections;
import java.util.Properties;

public class KafkaDebug {
    public static void main(String[] args) {
        String bootstrapServers = "hadoop101:9092";
        String topic = "TOPIC_TEST_MESSAGE";

        // 设置消费者配置
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", bootstrapServers);
        props.setProperty("group.id", "msg_group");
        props.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("auto.offset.reset", "earliest");


        // 创建消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        // 订阅 Topic
        consumer.subscribe(Collections.singletonList(topic));
        // 从 Offset 0 开始消费
        consumer.poll(0); // 触发分区分配
        for (TopicPartition partition : consumer.assignment()) {
            consumer.seek(partition, 0); // 将消费者的偏移量设置为 0
        }
        // 消费消息并打印 Key 和 Offset
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records) {
                System.out.println("Key: " + record.key() + ", Offset: " + record.offset() + ", Partition: " + record.partition());
                System.out.println("Value:" + record.value());
            }
        }
    }
}
相关推荐
矶鹬笛手2 小时前
(2.2) 新一代信息技术及应用
大数据·云计算·区块链·时序数据库
2501_941142134 小时前
前端高性能优化与微前端架构设计在大型互联网系统中的实践经验分享
kafka
汤姆yu4 小时前
基于python大数据的小说数据可视化及预测系统
大数据·python·信息可视化
立控信息LKONE4 小时前
库室采购安全设施设备——自主研发、国产化监管一体机
大数据·安全
20岁30年经验的码农4 小时前
Kafka 消息中间件实战指南
分布式·kafka·linq
无心水4 小时前
【分布式利器:限流】4、异步场景限流:消息队列削峰填谷+动态限流实现
分布式·mq·分布式限流·动态限流·分布式利器·异步场景限流·消息队列削峰填谷
z***89716 小时前
【分布式】Hadoop完全分布式的搭建(零基础)
大数据·hadoop·分布式
TDengine (老段)7 小时前
TDengine 转换函数 TO_JSON 用户手册
android·大数据·数据库·json·时序数据库·tdengine·涛思数据
隐语SecretFlow7 小时前
【隐语Serectflow】基于隐私保护的分布式数字身份认证技术研究及实践探索
分布式
回家路上绕了弯7 小时前
支付请求幂等性设计:从原理到落地,杜绝重复扣款
分布式·后端