大数据篇Kafka消息队列指定Topic打印Key、Value、Offset和Partition

1、概念简介

说到Apache Kafka消息传递系统时,以下是一些关键概念的解释:

Key(键):Kafka消息由Key和Value组成。Key是一个可选的字段,它通常用于消息的路由和分区策略。Key的目的是确保具有相同Key的消息被写入同一个分区。当消费者接收到消息时,可以使用Key来进行消息处理和路由操作。在某些情况下,Key还可以用于数据合并和聚合。

Value(值):Value是Kafka消息中包含的实际数据。它可以是任何形式的字节流,没有特定的格式要求。Value可以是文本、二进制数据、JSON、XML或任何其他格式的信息。消费者通常根据Value进行业务逻辑处理。

Offset(偏移量):Offset是一个用来唯一标识Kafka分区中每条消息的数字。每个分区都有自己的Offset序列,并且它们是连续递增的。Offset的作用是跟踪每个消费者在分区中的处理位置。当消费者读取消息时,它会保存最后处理的Offset,以便在下次读取消息时从正确的位置开始。

Partition(分区):Kafka将主题划分为多个分区,每个分区是一个有序的、持久化的日志文件。分区使得Kafka能够实现高吞吐量和水平扩展。在生产者写入消息时,Kafka会根据特定的分区策略将消息写入到合适的分区中。每个分区都有自己的一系列Offset,并且可以被独立地读取和复制。

总结起来,Kafka的消息由Key和Value组成,Key用于路由和分区策略,Value是实际的消息数据。每个消息都有一个唯一的Offset,用于跟踪消费者在分区中的处理位置。而分区则允许Kafka实现高吞吐量和扩展性。

2、代码实现

写一段代码打印一下当前Kafka队列中指定一个Topic,打印Key、Value、Offset和Partition

scala 复制代码
package test.scala;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Collections;
import java.util.Properties;

public class KafkaDebug {
    public static void main(String[] args) {
        String bootstrapServers = "hadoop101:9092";
        String topic = "TOPIC_TEST_MESSAGE";

        // 设置消费者配置
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", bootstrapServers);
        props.setProperty("group.id", "msg_group");
        props.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("auto.offset.reset", "earliest");


        // 创建消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        // 订阅 Topic
        consumer.subscribe(Collections.singletonList(topic));
        // 从 Offset 0 开始消费
        consumer.poll(0); // 触发分区分配
        for (TopicPartition partition : consumer.assignment()) {
            consumer.seek(partition, 0); // 将消费者的偏移量设置为 0
        }
        // 消费消息并打印 Key 和 Offset
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records) {
                System.out.println("Key: " + record.key() + ", Offset: " + record.offset() + ", Partition: " + record.partition());
                System.out.println("Value:" + record.value());
            }
        }
    }
}
相关推荐
东窗西篱梦34 分钟前
Redis集群部署指南:高可用与分布式实践
数据库·redis·分布式
Acrel_Fanny35 分钟前
Acrel-1000系列分布式光伏监控系统在湖北荆门一马光彩大市场屋顶光伏发电项目中应用
分布式
xufwind41 分钟前
spark standlone 集群离线安装
大数据·分布式·spark
AI数据皮皮侠1 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
半新半旧2 小时前
Redis集群和 zookeeper 实现分布式锁的优势和劣势
redis·分布式·zookeeper
亲爱的非洲野猪2 小时前
Kafka “假死“现象深度解析与解决方案
分布式·kafka
CodeWithMe2 小时前
【Note】《Kafka: The Definitive Guide》第三章: Kafka 生产者深入解析:如何高效写入 Kafka 消息队列
分布式·kafka
虾条_花吹雪2 小时前
2、Connecting to Kafka
分布式·ai·kafka
DeepSeek大模型官方教程3 小时前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
大数据CLUB4 小时前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark