T5模型: Transfer Text-to-Text Transformer(谷歌)

🔥 T5由谷歌发表于2019,《Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer》,最终版本发布在:JMLR。

一句话总结T5: 大一统模型,seq2seq形式完成各类nlp任务,大数据集预训练,大量实验,财大气粗,诚意满满,给nlp预训练模型领域提供了一个通用框架,提供了一套建议参数。

作者测过包括encoder-decoder,decoder,prefix lm。 几种不同的结构主要是因为attention mask机制不一样,其中prefix lm可看作是encoder 和 decoder 的融合体,一部分如 encoder 一样能看到全体信息,一部分如 decoder 一样只能看到过去信息。最近开源的 UniLM, ChatGLM_v1便是此结构。

作者还测了不同的预训练机制,如下配置效果最好,于是下面就是T5模型的配置了:

  • transformer的encoder-decoder结构
  • BERT-style 式的mask方法;
  • Replace Span 的mask策略(即对连续的一小段maks,统一替换成一个mask token);
  • 15 %的 mask比例;
  • 长度为3的mask时小段长度。

Reference

1\] Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer\[J\]. The Journal of Machine Learning Research, 2020, 21(1): 5485-5551.

相关推荐
双翌视觉18 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中18 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海19 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥19 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在19 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星19 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin20 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群20 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸20 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI20 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai