T5模型: Transfer Text-to-Text Transformer(谷歌)

🔥 T5由谷歌发表于2019,《Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer》,最终版本发布在:JMLR。

一句话总结T5: 大一统模型,seq2seq形式完成各类nlp任务,大数据集预训练,大量实验,财大气粗,诚意满满,给nlp预训练模型领域提供了一个通用框架,提供了一套建议参数。

作者测过包括encoder-decoder,decoder,prefix lm。 几种不同的结构主要是因为attention mask机制不一样,其中prefix lm可看作是encoder 和 decoder 的融合体,一部分如 encoder 一样能看到全体信息,一部分如 decoder 一样只能看到过去信息。最近开源的 UniLM, ChatGLM_v1便是此结构。

作者还测了不同的预训练机制,如下配置效果最好,于是下面就是T5模型的配置了:

  • transformer的encoder-decoder结构
  • BERT-style 式的mask方法;
  • Replace Span 的mask策略(即对连续的一小段maks,统一替换成一个mask token);
  • 15 %的 mask比例;
  • 长度为3的mask时小段长度。

Reference

1\] Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer\[J\]. The Journal of Machine Learning Research, 2020, 21(1): 5485-5551.

相关推荐
AI.NET 极客圈2 分钟前
.NET 原生驾驭 AI 新基建实战系列(四):Qdrant ── 实时高效的向量搜索利器
数据库·人工智能·.net
用户21411832636029 分钟前
dify案例分享--告别手工录入!Dify 工作流批量识别电子发票,5分钟生成Excel表格
前端·人工智能
SweetRetry10 分钟前
前端依赖管理实战:从臃肿到精简的优化之路
前端·人工智能
Icoolkj18 分钟前
Komiko 视频到视频功能炸裂上线!
人工智能·音视频
LLM大模型20 分钟前
LangChain篇-提示词工程应用实践
人工智能·程序员·llm
TiAmo zhang22 分钟前
人机融合智能 | “人智交互”跨学科新领域
人工智能
算家计算29 分钟前
6GB显存玩转SD微调!LoRA-scripts本地部署教程,一键炼出专属AI画师
人工智能·开源
YYXZZ。。29 分钟前
PyTorch——非线性激活(5)
人工智能·pytorch·python
孤独野指针*P32 分钟前
释放模型潜力:浅谈目标检测微调技术(Fine-tuning)
人工智能·深度学习·yolo·计算机视觉·目标跟踪
机器学习之心34 分钟前
Transformer-BiGRU多变量时序预测(Matlab完整源码和数据)
深度学习·matlab·transformer·bigru