pytorch深度学习逻辑回归 logistic regression

python 复制代码
# logistic regression 二分类
# 导入pytorch  和 torchvision
import numpy as np
import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

x_data = torch.tensor([[1.0], [2.0], [3.0]])  # x_data是一个张量
y_data = torch.Tensor([[0], [0], [1]])  # Tensor是一个类,tesor是一个张量


# 定义logistic regression模型
class LogisticRegressionModel(nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()  # 等价于nn.Module.__init__(self)
        self.linear = nn.Linear(1, 1)  # 输入和输出的维度都是1

    def forward(self, x):  # forward函数是必须要有的,用来构建计算图
        # 二分类问题,所以用sigmoid函数作为激活函数
        y_pred = torch.sigmoid(self.linear(x))  # forward
        return y_pred


model = LogisticRegressionModel()  # 实例化一个模型
criterion = nn.BCELoss(size_average=False)  # 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化器 lr为学习率

# 训练模型
for epoch in range(100):  # 训练100次
    y_pred = model(x_data)  # forward
    loss = criterion(y_pred, y_data)  # compute loss
    print(epoch, loss.item())  # 打印loss

    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # backward
    optimizer.step()  # update

# 测试模型
x_test = torch.tensor([[4.0]])
y_test = model(x_test)
print("predict (after training)", y_test.data)  # 预测

# 绘制训练次数和预测值的关系
x = np.linspace(0, 10, 200)  # 从0到10均匀取200个点
x_t = torch.Tensor(x).view(200, 1)  # 转换成200行1列的张量 用Tensor是因为要用到torch.sigmoid
y_t = model(x_t)  # 预测
y = y_t.data.numpy()  # 转换成numpy数组
plt.plot(x, y)  # 绘制预测值和x的关系
plt.plot([0, 10], [0.5, 0.5], c='r')  # 绘制y=0.5的直线
plt.xlabel("Hours")  # x轴标签
plt.ylabel("Probability of Pass")  # y轴标签
plt.grid()  # 绘制网格
plt.show()  # 显示图像

结果

相关推荐
菜包eo5 分钟前
二维码驱动的独立站视频集成方案
网络·python·音视频
Yo_Becky11 分钟前
【PyTorch】PyTorch预训练模型缓存位置迁移,也可拓展应用于其他文件的迁移
人工智能·pytorch·经验分享·笔记·python·程序人生·其他
yzx99101323 分钟前
关于网络协议
网络·人工智能·python·网络协议
fangeqin24 分钟前
ubuntu源码安装python3.13遇到Could not build the ssl module!解决方法
linux·python·ubuntu·openssl
Jay Kay1 小时前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
FF-Studio1 小时前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
会的全对٩(ˊᗜˋ*)و1 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
云渚钓月梦未杳1 小时前
深度学习03 人工神经网络ANN
人工智能·深度学习
___波子 Pro Max.2 小时前
GitHub Actions配置python flake8和black
python·black·flake8
贾全2 小时前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人