leetcode - 146. LRU Cache

Description

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

LRUCache(int capacity) Initialize the LRU cache with positive size capacity.

int get(int key) Return the value of the key if the key exists, otherwise return -1.

void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1);    // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2);    // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1);    // return -1 (not found)
lRUCache.get(3);    // return 3
lRUCache.get(4);    // return 4

Constraints:

1 <= capacity <= 3000
0 <= key <= 10^4
0 <= value <= 10^5
At most 2 * 105 calls will be made to get and put.

Solution

dict + heap

Use a dict to store the key-value pair, and also store the timestamp of the calling of functions. If the capacity is exceeded, then pop from the heap, compare the timestamp in heap with timestamp in dict, if they are the same, pop from the dict.

The time complexity of put function is not strictly o ( 1 ) o(1) o(1) though.

dict + double-sided linked list

Use head and tail for the linked list!!

Code

dict + heap

python3 复制代码
class LRUCache:
    import heapq

    def __init__(self, capacity: int):
        self.key_value = {}
        self.time_heap = []
        self.timestamp = 0
        self.capacity = capacity

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        self.timestamp += 1
        self.key_value[key][1] = self.timestamp
        heapq.heappush(self.time_heap, (self.timestamp, key))
        return self.key_value[key][0]

    def put(self, key: int, value: int) -> None:
        self.timestamp += 1
        self.key_value[key] = [value, self.timestamp]
        heapq.heappush(self.time_heap, (self.timestamp, key))
        while len(self.key_value) > self.capacity:
            timestamp, key = heapq.heappop(self.time_heap)
            if self.key_value[key][1] == timestamp:
                self.key_value.pop(key)       


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

Linked List

python3 复制代码
class LinkedList:
    def __init__(self, key: int, val: int):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.head = LinkedList(-1, -1)
        self.tail = LinkedList(-1, -1)
        self.head.next = self.tail
        self.tail.prev = self.head
        self.capacity = capacity
        self.key_value = {}

    def _remove(self, node) -> None:
        prev = node.prev
        pn = node.next
        prev.next = pn
        pn.prev = prev

    def _add(self, node) -> None:
        self.tail.prev.next = node
        node.prev = self.tail.prev
        self.tail.prev = node
        node.next = self.tail

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        node = self.key_value[key]
        self._remove(node)
        self._add(node)
        return node.val
        
    def put(self, key: int, value: int) -> None:
        if key in self.key_value:
            self._remove(self.key_value[key])
        node = LinkedList(key, value)
        self._add(node)
        self.key_value[key] = node
        while len(self.key_value) > self.capacity:
            head_next = self.head.next
            self._remove(head_next)
            self.key_value.pop(head_next.key)


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
相关推荐
Jayen H3 分钟前
【优选算法】盛最多水的容器
算法
机跃9 分钟前
递归算法常见问题(Java)
java·开发语言·算法
<但凡.20 分钟前
题海拾贝:蓝桥杯 2020 省AB 乘法表
c++·算法·蓝桥杯
pzx_00142 分钟前
【LeetCode】94.二叉树的中序遍历
算法·leetcode·职场和发展
DogDaoDao44 分钟前
leetcode 面试经典 150 题:矩阵置零
数据结构·c++·leetcode·面试·矩阵·二维数组·矩阵置零
我曾经是个程序员1 小时前
使用C#生成一张1G大小的空白图片
java·算法·c#
芒果de香蕉皮1 小时前
mavlink移植到单片机stm32f103c8t6,实现接收和发送数据
stm32·单片机·嵌入式硬件·算法·无人机
徐子童1 小时前
二分查找算法专题
数据结构·算法
FG.1 小时前
Day35汉明距离
java·leetcode
小王子10241 小时前
数据结构与算法Python版 二叉查找树
数据结构·python·算法·二叉查找树