leetcode - 146. LRU Cache

Description

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

LRUCache(int capacity) Initialize the LRU cache with positive size capacity.

int get(int key) Return the value of the key if the key exists, otherwise return -1.

void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

复制代码
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1);    // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2);    // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1);    // return -1 (not found)
lRUCache.get(3);    // return 3
lRUCache.get(4);    // return 4

Constraints:

复制代码
1 <= capacity <= 3000
0 <= key <= 10^4
0 <= value <= 10^5
At most 2 * 105 calls will be made to get and put.

Solution

dict + heap

Use a dict to store the key-value pair, and also store the timestamp of the calling of functions. If the capacity is exceeded, then pop from the heap, compare the timestamp in heap with timestamp in dict, if they are the same, pop from the dict.

The time complexity of put function is not strictly o ( 1 ) o(1) o(1) though.

dict + double-sided linked list

Use head and tail for the linked list!!

Code

dict + heap

python3 复制代码
class LRUCache:
    import heapq

    def __init__(self, capacity: int):
        self.key_value = {}
        self.time_heap = []
        self.timestamp = 0
        self.capacity = capacity

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        self.timestamp += 1
        self.key_value[key][1] = self.timestamp
        heapq.heappush(self.time_heap, (self.timestamp, key))
        return self.key_value[key][0]

    def put(self, key: int, value: int) -> None:
        self.timestamp += 1
        self.key_value[key] = [value, self.timestamp]
        heapq.heappush(self.time_heap, (self.timestamp, key))
        while len(self.key_value) > self.capacity:
            timestamp, key = heapq.heappop(self.time_heap)
            if self.key_value[key][1] == timestamp:
                self.key_value.pop(key)       


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

Linked List

python3 复制代码
class LinkedList:
    def __init__(self, key: int, val: int):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.head = LinkedList(-1, -1)
        self.tail = LinkedList(-1, -1)
        self.head.next = self.tail
        self.tail.prev = self.head
        self.capacity = capacity
        self.key_value = {}

    def _remove(self, node) -> None:
        prev = node.prev
        pn = node.next
        prev.next = pn
        pn.prev = prev

    def _add(self, node) -> None:
        self.tail.prev.next = node
        node.prev = self.tail.prev
        self.tail.prev = node
        node.next = self.tail

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        node = self.key_value[key]
        self._remove(node)
        self._add(node)
        return node.val
        
    def put(self, key: int, value: int) -> None:
        if key in self.key_value:
            self._remove(self.key_value[key])
        node = LinkedList(key, value)
        self._add(node)
        self.key_value[key] = node
        while len(self.key_value) > self.capacity:
            head_next = self.head.next
            self._remove(head_next)
            self.key_value.pop(head_next.key)


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
相关推荐
明月看潮生39 分钟前
青少年编程与数学 02-016 Python数据结构与算法 01课题、算法
数据结构·python·算法·青少年编程·编程与数学
小鱼学习笔记1 小时前
4.1最大子数组和(贪心算法、动态规划)
算法·贪心算法·动态规划
Мартин.2 小时前
[CISSP] [6] 密码学和对称密钥算法
算法·密码学
勤劳的进取家2 小时前
贪心算法之Huffman编码
数据结构·人工智能·算法·数学建模·贪心算法·动态规划
石去皿2 小时前
力扣hot100 61-70记录
c++·算法·leetcode·深度优先
小样vvv2 小时前
【面试篇】Dubbo
面试·职场和发展·dubbo
晓纪同学2 小时前
随性研究c++-智能指针
开发语言·c++·算法
程序员爱钓鱼2 小时前
Go 连接 Oracle 太麻烦?一文教你优雅搞定 GORM + Oracle 全流程!
后端·算法·go
xuanjiong3 小时前
纯个人整理,蓝桥杯使用的算法模板day4(图论 最小生成树问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·图论
lmy201211084 小时前
提高:图论:强连通分量 图的遍历
c++·算法·图论·强联通分量