leetcode - 146. LRU Cache

Description

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

LRUCache(int capacity) Initialize the LRU cache with positive size capacity.

int get(int key) Return the value of the key if the key exists, otherwise return -1.

void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

复制代码
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1);    // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2);    // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1);    // return -1 (not found)
lRUCache.get(3);    // return 3
lRUCache.get(4);    // return 4

Constraints:

复制代码
1 <= capacity <= 3000
0 <= key <= 10^4
0 <= value <= 10^5
At most 2 * 105 calls will be made to get and put.

Solution

dict + heap

Use a dict to store the key-value pair, and also store the timestamp of the calling of functions. If the capacity is exceeded, then pop from the heap, compare the timestamp in heap with timestamp in dict, if they are the same, pop from the dict.

The time complexity of put function is not strictly o ( 1 ) o(1) o(1) though.

dict + double-sided linked list

Use head and tail for the linked list!!

Code

dict + heap

python3 复制代码
class LRUCache:
    import heapq

    def __init__(self, capacity: int):
        self.key_value = {}
        self.time_heap = []
        self.timestamp = 0
        self.capacity = capacity

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        self.timestamp += 1
        self.key_value[key][1] = self.timestamp
        heapq.heappush(self.time_heap, (self.timestamp, key))
        return self.key_value[key][0]

    def put(self, key: int, value: int) -> None:
        self.timestamp += 1
        self.key_value[key] = [value, self.timestamp]
        heapq.heappush(self.time_heap, (self.timestamp, key))
        while len(self.key_value) > self.capacity:
            timestamp, key = heapq.heappop(self.time_heap)
            if self.key_value[key][1] == timestamp:
                self.key_value.pop(key)       


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

Linked List

python3 复制代码
class LinkedList:
    def __init__(self, key: int, val: int):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.head = LinkedList(-1, -1)
        self.tail = LinkedList(-1, -1)
        self.head.next = self.tail
        self.tail.prev = self.head
        self.capacity = capacity
        self.key_value = {}

    def _remove(self, node) -> None:
        prev = node.prev
        pn = node.next
        prev.next = pn
        pn.prev = prev

    def _add(self, node) -> None:
        self.tail.prev.next = node
        node.prev = self.tail.prev
        self.tail.prev = node
        node.next = self.tail

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        node = self.key_value[key]
        self._remove(node)
        self._add(node)
        return node.val
        
    def put(self, key: int, value: int) -> None:
        if key in self.key_value:
            self._remove(self.key_value[key])
        node = LinkedList(key, value)
        self._add(node)
        self.key_value[key] = node
        while len(self.key_value) > self.capacity:
            head_next = self.head.next
            self._remove(head_next)
            self.key_value.pop(head_next.key)


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
相关推荐
liulilittle32 分钟前
IP校验和算法:从网络协议到SIMD深度优化
网络·c++·网络协议·tcp/ip·算法·ip·通信
bkspiderx2 小时前
C++经典的数据结构与算法之经典算法思想:贪心算法(Greedy)
数据结构·c++·算法·贪心算法
中华小当家呐3 小时前
算法之常见八大排序
数据结构·算法·排序算法
沐怡旸4 小时前
【算法--链表】114.二叉树展开为链表--通俗讲解
算法·面试
一只懒洋洋4 小时前
K-meas 聚类、KNN算法、决策树、随机森林
算法·决策树·聚类
方案开发PCBA抄板芯片解密5 小时前
什么是算法:高效解决问题的逻辑框架
算法
songx_996 小时前
leetcode9(跳跃游戏)
数据结构·算法·游戏
小白狮ww6 小时前
RStudio 教程:以抑郁量表测评数据分析为例
人工智能·算法·机器学习
AAA修煤气灶刘哥6 小时前
接口又被冲崩了?Sentinel 这 4 种限流算法,帮你守住后端『流量安全阀』
后端·算法·spring cloud
kk”7 小时前
C语言快速排序
数据结构·算法·排序算法