leetcode - 146. LRU Cache

Description

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

LRUCache(int capacity) Initialize the LRU cache with positive size capacity.

int get(int key) Return the value of the key if the key exists, otherwise return -1.

void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

复制代码
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1);    // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2);    // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1);    // return -1 (not found)
lRUCache.get(3);    // return 3
lRUCache.get(4);    // return 4

Constraints:

复制代码
1 <= capacity <= 3000
0 <= key <= 10^4
0 <= value <= 10^5
At most 2 * 105 calls will be made to get and put.

Solution

dict + heap

Use a dict to store the key-value pair, and also store the timestamp of the calling of functions. If the capacity is exceeded, then pop from the heap, compare the timestamp in heap with timestamp in dict, if they are the same, pop from the dict.

The time complexity of put function is not strictly o ( 1 ) o(1) o(1) though.

dict + double-sided linked list

Use head and tail for the linked list!!

Code

dict + heap

python3 复制代码
class LRUCache:
    import heapq

    def __init__(self, capacity: int):
        self.key_value = {}
        self.time_heap = []
        self.timestamp = 0
        self.capacity = capacity

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        self.timestamp += 1
        self.key_value[key][1] = self.timestamp
        heapq.heappush(self.time_heap, (self.timestamp, key))
        return self.key_value[key][0]

    def put(self, key: int, value: int) -> None:
        self.timestamp += 1
        self.key_value[key] = [value, self.timestamp]
        heapq.heappush(self.time_heap, (self.timestamp, key))
        while len(self.key_value) > self.capacity:
            timestamp, key = heapq.heappop(self.time_heap)
            if self.key_value[key][1] == timestamp:
                self.key_value.pop(key)       


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

Linked List

python3 复制代码
class LinkedList:
    def __init__(self, key: int, val: int):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.head = LinkedList(-1, -1)
        self.tail = LinkedList(-1, -1)
        self.head.next = self.tail
        self.tail.prev = self.head
        self.capacity = capacity
        self.key_value = {}

    def _remove(self, node) -> None:
        prev = node.prev
        pn = node.next
        prev.next = pn
        pn.prev = prev

    def _add(self, node) -> None:
        self.tail.prev.next = node
        node.prev = self.tail.prev
        self.tail.prev = node
        node.next = self.tail

    def get(self, key: int) -> int:
        if key not in self.key_value:
            return -1
        node = self.key_value[key]
        self._remove(node)
        self._add(node)
        return node.val
        
    def put(self, key: int, value: int) -> None:
        if key in self.key_value:
            self._remove(self.key_value[key])
        node = LinkedList(key, value)
        self._add(node)
        self.key_value[key] = node
        while len(self.key_value) > self.capacity:
            head_next = self.head.next
            self._remove(head_next)
            self.key_value.pop(head_next.key)


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
相关推荐
QxQ么么5 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
Mz12217 小时前
day05 移动零、盛水最多的容器、三数之和
数据结构·算法·leetcode
SoleMotive.7 小时前
如果用户反映页面跳转得非常慢,该如何排查
jvm·数据库·redis·算法·缓存
念越7 小时前
判断两棵二叉树是否相同(力扣)
算法·leetcode·入门
未可知7777 小时前
软件设计师(上午题4)、面向对象、uml、设计模式
设计模式·职场和发展·uml
ghie90908 小时前
线性三角波连续调频毫米波雷达目标识别
人工智能·算法·计算机视觉
却话巴山夜雨时i8 小时前
74. 搜索二维矩阵【中等】
数据结构·算法·矩阵
sin_hielo8 小时前
leetcode 3512
数据结构·算法·leetcode
_F_y8 小时前
二分:二分查找、在排序数组中查找元素的第一个和最后一个位置、搜索插入位置、x 的平方根
c++·算法