opencv 05 彩色RGB像素值操作

opencv 05 彩色RGB像素值操作

RGB 模式的彩色图像在读入 OpenCV 内进行处理时,会按照行方向依次读取该 RGB 图像的 B 通道、G 通道、R 通道的像素点,并将像素点以行为单位存储在 ndarray 的列中。例如,

有一幅大小为 R 行×C 列的原始 RGB 图像,其在 OpenCV 内以 BGR 模式的三维数组形式存储,

如图 2-7 所示

可以使用表达式访问数组内的值。例如,可以使用 image[0,0,0]访问图像 image 的 B 通道

内的第 0 行第 0 列上的像素点

第 1 个索引表示第 0 行。

第 2 个索引表示第 0 列。

第 3 个索引表示第 0 个颜色通道。

根据上述分析可知,假设有一个红色(其 R 通道值为 255,G 通道值为 0,B 通道值为 0)

图像,不同的访问方式得到的值如下。

 img[0,0]:访问图像 img 第 0 行第 0 列像素点的 BGR 值。图像是 BGR 格式的,得到的数值为[0,0,255]。

 img[0,0,0]:访问图像 img 第 0 行第 0 列第 0 个通道的像素值。图像是 BGR 格式的,所

以第 0 个通道是 B 通道,会得到 B 通道内第 0 行第 0 列的位置所对应的值 0。

 img[0,0,1]:访问图像 img 第 0 行第 0 列第 1 个通道的像素值。图像是 BGR 格式的,所

以第 1 个通道是 G 通道,会得到 G 通道内第 0 行第 0 列的位置所对应的值 0。

 img[0,0,2]:访问图像 img 第 0 行第 0 列第 2 个通道的像素值。图像是 BGR 格式的,所

以第 2 个通道是 R 通道,会得到 R 通道内第 0 行第 0 列的位置所对应的值 255

为了方便理解,我们首先使用 Numpy 库来生成一个 2×4×3 大小的数组,用它模拟一幅黑

色图像,并对其进行简单处理

python 复制代码
import cv2
import numpy as np


#-----------蓝色通道值--------------
blue=np.zeros((300,300,3),dtype=np.uint8)
blue[:,:,0]=255
print("blue=\n",blue)
cv2.imshow("blue",blue)
#-----------绿色通道值--------------
green=np.zeros((300,300,3),dtype=np.uint8)
green[:,:,1]=255
print("green=\n",green)
cv2.imshow("green",green)
#-----------红色通道值--------------
red=np.zeros((300,300,3),dtype=np.uint8)
red[:,:,2]=255
print("red=\n",red)
cv2.imshow("red",red)


cv2.waitKey(0)
cv2.destroyAllWindows()

运行后打印效果:


opencv 中对应的BGR,刚好是蓝色,绿色,红色的顺序

运行上述程序,会显示颜色为蓝色、绿色、红色的三幅图像,分别对应数组 blue、数组 green、数组 red

将三种颜色在一张图中演示操作

python 复制代码
import cv2
import numpy as np


img=np.zeros((300,300,3),dtype=np.uint8)

img[:,0:100,0]=255
img[:,100:200,1]=255
img[:,200:300,2]=255
print("img=\n",img)

cv2.imshow("image",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

img[:,0:100,0]=255

从上面我们已经知道 第一索引是 矩阵里的行,:代表着满行,第二个值0:100 ,代表这 0到100列,第三索引 是通道值,按照opencv 读取顺序是B,

运行效果:

相关推荐
AndrewHZ16 分钟前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊22 分钟前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏1 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉1 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01071 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
nonono2 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络
AKAMAI2 小时前
AI需要防火墙,云计算需要重新构想
人工智能·云原生·云计算
钢铁男儿3 小时前
如何构建一个神经网络?从零开始搭建你的第一个深度学习模型
人工智能·深度学习·神经网络