flink水位线传播及任务事件时间

背景

本文来讲解一下flink的水位线传播及对其对任务事件时间的影响

水位线

首先flink是通过从源头生成水位线记录的方式来实现水位线传播的,也就是说水位线是嵌入在正常的记录流中的特殊记录,携带者水位线的时间戳,以下我们就通过图片的方式来讲解下水位线是如何传播以及更新任务的事件时间的.

如上图所示,任务中的事件时间等于任务中收到的前置任务中的最小水位线时间,然后任务会把当前任务的事件时间通过广播的方式向下游传播.

总结

从水位线的更新我们可以知道它依赖于前置的每个任务周期性的推进对应分区的水位线时间,也就是如果某个分区的水位线时间一直不更新,那么任务的事件时间就会没法更新,这样也就导致一直没法触发时间相关算子任务的计算,从而导致该任务只能不停的缓冲其他分区的记录流,从而导致状态大小膨胀以及内存消耗的增加,甚至导致OOM的严重后果,所以所有分区的水位线必须有规律的递增,并且相互之间不能相差太大。

相关推荐
TDengine (老段)几秒前
TDengine 数学函数 ASIN() 用户手册
大数据·数据库·sql·物联网·时序数据库·tdengine·涛思数据
罗技1233 小时前
Elasticsearch、OpenSearch 与 Easysearch:三代搜索引擎的演化与抉择
大数据·elasticsearch·搜索引擎
非极限码农7 小时前
Apache Spark 上手指南(基于 Spark 3.5.0 稳定版)
大数据·spark·apache
Guheyunyi9 小时前
消防管理系统如何重构现代空间防御体系
大数据·运维·人工智能·安全·信息可视化·重构
二进制_博客11 小时前
spark on hive 还是 hive on spark?
大数据·hive·spark
智海观潮11 小时前
Spark RDD详解 —— RDD特性、lineage、缓存、checkpoint、依赖关系
大数据·缓存·spark
一个会的不多的人14 小时前
数字化转型:概念性名词浅谈(第七十二讲)
大数据·人工智能·制造·数字化转型
数据智能老司机14 小时前
在 Databricks 上的 Unity Catalog 数据治理——Unity Catalog 的内部机制
大数据·架构
gb421528716 小时前
elasticsearch索引多长时间刷新一次(智能刷新索引根据数据条数去更新)
大数据·elasticsearch·jenkins
IT毕设梦工厂17 小时前
大数据毕业设计选题推荐-基于大数据的人体生理指标管理数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata