作者前言
欢迎小可爱们前来借鉴我的gtiee秦老大大 (qin-laoda) - Gitee.com
目录
join连接
内连接
左连接
右连接
外连接
其他连接
作者小插曲
最近学校课程很多,无法及时更新,还望各位小可爱多多包含,你的三连是我的动力
插播小知识
1.当我们拼接的时候,有些表的字段数不够就用null补上
内连接
sql
select
*
from
(select * from new_employees limit 10)as ne
join
(select * from employees limit 10)as em
on ne.emp_no=em.emp_no;
左连接
sql
select
*
from
(select * from new_employees limit 20)as ne
left join
(select * from employees limit 10)as em
on ne.emp_no=em.emp_no;
右连接
sql
select
*
from
(select * from new_employees limit 10)as ne
right join
(select * from employees limit 20)as em
on ne.emp_no=em.emp_no;
外连接
sql
select
*
from
(select * from new_employees limit 20)as ne
left join
(select * from employees limit 10)as em
on ne.emp_no=em.emp_no
union
select
*
from
(select * from new_employees limit 10)as ne
right join
(select * from employees limit 20)as em
on ne.emp_no=em.emp_no;
这里的代码我就不使用图片表示了,在上一篇的关于jion 的这些讲了很清楚了,现在我们来接着下面来
其他连接
其他连接一:


可以看出在这个连接是取左连接的匹配null部分,我们的思路就是左连接后再筛选出来,
sql
select
ne.emp_no,
ne.`age`,
ne.`gender`,
em.`birth_date`,
em.`first_name`,
em.`last_name`,
em.`gender`,
em.`hire_date`
from
(select * from new_employees limit 20)as ne
left join
(select * from employees limit 10)as em
on ne.emp_no=em.emp_no
where em.`emp_no` is null;
结果:

同理
其他连接二:


sql
select
ne.emp_no,
ne.`age`,
ne.`gender`,
em.`birth_date`,
em.`first_name`,
em.`last_name`,
em.`gender`,
em.`hire_date`
from
(select * from new_employees limit 10)as ne
right join
(select * from employees limit 20)as em
on ne.emp_no=em.emp_no
where ne.`emp_no` is null;

其他连接3:


思路就是外连接取含有null的部分,先左连接表格,然后筛选出null的部分,再右连接,筛选出null的部分,然后利用union distinct拼接表格,
sql
select
*
from
(select * from new_employees limit 20)as ne
left join
(select * from employees limit 10)as em
on ne.emp_no=em.emp_no
where em.emp_no is null
union
select
*
from
(select * from new_employees limit 10)as ne
right join
(select * from employees limit 20)as em
on ne.emp_no=em.emp_no
where ne.emp_no is null;
注意一下,左连接和右连接都是要有条件筛选的

自关联
把竖表变横表
简单的说就是自己跟自己关联
这张表的内容
这张表自连接
select * from
city as a
join
city as b
on a.`id` = b. pid;
子查询
在一个 select 语句中,嵌入了另一个 select 语句,前面我写的时候就用到过了
select
*
from
(select * from city limit 10) as a;

sql
-- 标量子查询
-- 查询大于等于公司平均年龄的员工
select * from table
where age >= (select avg(age) from table);
-- 列级子查询
select * from table1
where id in (select id from table2);
-- 行级子查询
select * from table
where (height,age) = (select max(height),max(age) from table);
上述写法是没问题的但是,这样写不怎么好,一般我们可以利用join 来连接
sql
select
*
from new_employees as b
join
(
select avg(age) as av from new_employees
)as a
on b.age>= a.av
limit 10;
总结:
执行顺序为:
from 表名
join
where
group by
select distinct *
having
order by
limit start, coun
join on中的on 是对主表和附表进行筛选,然后开辟一块一定空间的内存,存放在内存中,where是对join on后的数据进行筛选,
筛选完分组,分完组之后可以说是字段基本是定型了
上面三种子查询就是也可能会在第二个select 的数据存储可能会挤压第一个select开辟的空间造成数据的混乱,,数据只能减少,不能增加
可以理解为先圈选范围再计算数据
总结:
join 的连接到这里就结束了,有不懂的小可爱可以私聊我,