kaggle新赛:Bengali.AI 语音识别大赛赛题解析

**赛题名称:**Bengali.AI Speech Recognition

**赛题链接:**https://www.kaggle.com/competitions/bengaliai-speech

赛题背景

竞赛主办方 Bengali.AI 致力于加速孟加拉语(当地称为孟加拉语)的语言技术研究。Bengali.AI 通过社区驱动的收集活动众包大规模数据集,并通过研究竞赛为其数据集提供众包解决方案。孟加拉.AI语双管齐下的方法的所有结果,包括数据集和训练模型,都是开源的,供公众使用。

参赛者在本次竞赛中的工作可能会对世界上最流行但资源匮乏的语言之一的语音识别改进产生影响。参赛者还可以为解决语音识别的主要挑战之一(分布外泛化)提供急需的推动力。

赛题方向

语音识别

赛题任务

本次比赛的目的是从未分发的录音中识别孟加拉语语音。参赛者将构建一个基于第一个大规模众包 (MaCro) 孟加拉语语音数据集训练的模型,其中包含来自印度和孟加拉国的约24,000人提供的1,200小时的语音数据作为训练数据。测试集包含来自训练中不存在的 17 个不同域的样本。

参赛者可以使用第一个孟加拉语分发外语音识别数据集来改进孟加拉语语音识别。此外,参赛者提交的内容将是孟加拉语的首批开源语音识别方法之一。

评估指标

提交的结果将通过计算平均词错误率来进行评估,步骤如下:

  • WER 是为测试集中的每个实例计算的。

  • WER在域内取平均值,由句子中的单词数加权。

  • 域平均值的(未加权)平均值是最终分数。

此 Python 代码计算指标:

import jiwer  # you may need to install this library

def mean_wer(solution, submission):
    joined = solution.merge(submission.rename(columns={'sentence': 'predicted'}))
    domain_scores = joined.groupby('domain').apply(
        # note that jiwer.wer computes a weighted average wer by default when given lists of strings
        lambda df: jiwer.wer(df['sentence'].to_list(), df['predicted'].to_list()),
    )
    return domain_scores.mean()

assert (solution.columns == ['id', 'domain', 'sentence']).all()
assert (submission.columns == ['id',' sentence']).all()
  • 提交格式

提交文件应包含两列:id and sentence 。参赛者需要预测文件夹中每个记录的句子。

提交文件应包含标头并具有以下格式:

id,sentence
0f3dac00655e,এছাড়াও নিউজিল্যান্ড এ ক্রিকেট দলের হয়েও খেলছেন তিনি।
a9395e01ad21,এছাড়াও নিউজিল্যান্ড এ ক্রিকেট দলের হয়েও খেলছেন তিনি।
bf36ea8b718d,এছাড়াও নিউজিল্যান্ড এ ক্রিকেট দলের হয়েও খেলছেন তিনি।
...

数据描述

  • train/:训练集,包含数千个MP3格式的录音文件。

  • test/:测试集,包含来自18个不同领域的自发语音录音,其中17个领域与训练集不同。私有测试集中可能还包含公共测试集中不存在的领域。

  • examples/:每个测试集领域的示例录音。这些示例录音可能有助于构建对领域变化具有鲁棒性的模型。这些示例录音是代表性的,且不会出现在测试集中。

  • train.csv:训练集的句子标签。

  • id:每个实例的唯一标识符。对应于train/目录中的文件{id}.mp3。

  • sentence:录音的纯文本转录。你的目标是为测试集中的每个录音预测这些句子。

  • split:无论是train还是validvalid拆分中的注释已经过手动检查和更正,而train拆分中的注释仅通过算法进行了清理。valid样本通常具有比train样本更高质量的注释,但其他方面来自相同的分布。

  • sample_submission.csv:一个样本提交文件,格式正确。详情请参阅Evaluation页面。

时间安排

  • 2023年7月17日 - 开始报名。

  • 2023年10月10日 - 报名截止。

  • 2023年10月10日 - 团队合并截止。

  • 2023年10月17日 - 最终提交截止。

竞赛奖金

  • 第一名 - $12,000

  • 第二名 - $10,000

  • 第三名 - $10,000

  • 第四名 - $10,000

  • 第五名 - $8,000

**关注下方【学姐带你玩AI】**🚀🚀🚀

回复"比赛"获取190+场比赛top方案(kaggle、天池、ccf...)

码字不易,欢迎大家点赞评论收藏!

相关推荐
游客5204 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
一位小说男主4 分钟前
编码器与解码器:从‘乱码’到‘通话’
人工智能·深度学习
深圳南柯电子20 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ21 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008826 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖32 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232922 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发