【深度学习笔记】动量梯度下降法

本专栏是网易云课堂人工智能课程《神经网络与深度学习》的学习笔记,视频由网易云课堂与 deeplearning.ai 联合出品,主讲人是吴恩达 Andrew Ng 教授。感兴趣的网友可以观看网易云课堂的视频进行深入学习,视频的链接如下:

神经网络和深度学习 - 网易云课堂

也欢迎对神经网络与深度学习感兴趣的网友一起交流 ~

目录

[1 指数加权平均](#1 指数加权平均)

[2 动量梯度下降法](#2 动量梯度下降法)


1 指数加权平均

在介绍更复杂的优化算法之前,你需要了解指数加权平均(Exponentially Weighted Average),在统计学中也叫做指数加权移动平均(Exponentially Weighted Moving Average)。

这里有伦敦一年的温度数据,如果想知道这一年温度的变化趋势,或者说温度的局部平均值,可以使用 0.9 乘以前一天的平均值,加上 0.1 乘以这一天的温度值,作为新的平均值。

如果把系数 0.9 替换为 β,0.1 替换为 1-β,就得到指数加权平均的公式。

vt 可以解释为 1/(1-β) 天的平均值,例如 β 取 0.9,1/(1-β) = 10,vt 近似等于 10 天的温度平均值。

β 值越大,得到的曲线越平滑,例如上图中绿色的曲线(对应 β = 0.98)。因为前一天的温度权重为 0.98,当天的温度权重仅为 1 - 0.98 = 0.02,在温度变化时,平均值的变化越迟缓。

2 动量梯度下降法

假设上图中,红点代表成本函数最小值的位置,在标准的梯度下降算法迭代过程中,梯度缓慢地摆动到最小值,上下波动的趋势减慢了梯度下降法的速度。使用更大的学习率,波动可能更大,但是减小学习率,迭代的过程也会变慢。

使用动量梯度下降法(Momentum Gradient Descent),你需要做的是,计算梯度的指数加权平均值,然后用该值更新权重。

与 α 一样,这里 β 也是梯度下降算法中的一个超参数,你需要尝试不同的 β 值,然后根据结果选择最优的一个。

相关推荐
xcnn_几秒前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
attitude.x6 分钟前
PyTorch 动态图的灵活性与实用技巧
前端·人工智能·深度学习
骥龙37 分钟前
XX汽集团数字化转型:全生命周期网络安全、数据合规与AI工业物联网融合实践
人工智能·物联网·web安全
zskj_qcxjqr43 分钟前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
Ven%1 小时前
第一章 神经网络的复习
人工智能·深度学习·神经网络
aramae1 小时前
C++ -- 模板
开发语言·c++·笔记·其他
研梦非凡1 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
Monkey的自我迭代1 小时前
多目标轮廓匹配
人工智能·opencv·计算机视觉
每日新鲜事1 小时前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能
空白到白1 小时前
机器学习-聚类
人工智能·算法·机器学习·聚类