在 “小小容器” WasmEdge 里运行小小羊驼 llama 2

昨天,特斯拉前 AI 总监、OpenAI 联合创始人 Andrej Karpathy 开源了 llama2.c 。 只用 500 行纯 C 语言就能训练和推理 llama 2 模型的框架,没有任何繁杂的 python 依赖。这个项目一推出就受到大家的追捧,24 小时内 GitHub 收获 4000 颗星!

可是,C 编译的原生机器码不能跨平台,不安全,也不可被调度。这些问题使得它的应用场景非常有限。这时,一个大胆的想法油然而生!把 llama2.c 编译成 Wasm 在 WasmEdge 里运行!

​图片来自 https://github.com/karpathy/llama2.c

这么做的好处是:

  • 轻量级:一个 Wasm 文件只有几十 KB 大小,相比于 Python 镜像动辄几百上千 MB,差了一万倍。
  • 安全:沙箱机制,提供隔离性,适合多租户的云部署。
  • 可移植:Wasm 文件无需任何改变,可以在 x86, ARM, Apple, RISC-V 机器上运行
  • 性能:没有冷启动,且运行速度接近本机速度
  • 能够被 Docker 和 kuberbetes 等容器工具进行管理

下面,我们来具体看看是如何实现的。

先决条件

请参考 WasmEdge 的官方文档安装 WasmEdge runtime

复制代码
curl -sSf https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/utils/install.sh | sudo bash -s — -p /usr/local

准备 wasi-sdk

复制代码
export WASI_VERSION=20
export WASI_VERSION_FULL=${WASI_VERSION}.0
wget https://github.com/WebAssembly/wasi-sdk/releases/download/wasi-sdk-${WASI_VERSION}/wasi-sdk-${WASI_VERSION_FULL}-linux.tar.gz
tar xvf wasi-sdk-${WASI_VERSION_FULL}-linux.tar.gz
export WASI_SDK_PATH=`pwd`/wasi-sdk-${WASI_VERSION_FULL}
CC="${WASI_SDK_PATH}/bin/clang --sysroot=${WASI_SDK_PATH}/share/wasi-sysroot"

把 llama2.c 编译成 Wasm

复制代码
git clone https://github.com/karpathy/llama2.c.git
cd llama2.c
$CC run.c -D_WASI_EMULATED_PROCESS_CLOCKS -lwasi-emulated-process-clocks -o run.wasm

优化 wasm file 并且运行

这里我们将使用 WasmEdge 的 AOT 编译器对编译好的 Wasm 文件进行优化,以提升 Wasm 的性能。

复制代码
$ wget https://karpathy.ai/llama2c/model.bin -P out
$ wasmedgec run.wasm run-aot.wasm
[2023-07-24 16:39:52.851] [info] compile start
[2023-07-24 16:39:52.858] [info] verify start
[2023-07-24 16:39:52.862] [info] optimize start
[2023-07-24 16:39:53.251] [info] codegen start
[2023-07-24 16:39:53.608] [info] output start
[2023-07-24 16:39:53.611] [info] compile done
[2023-07-24 16:39:53.611] [info] output start

运行这个 wasm 文件

复制代码
$ wasmedge --dir .:. run-aot.wasm out/model.bin

输出如下:

复制代码
Once upon a time, there was a wealthy man. He lived in a big house with many things. The wealthy man liked to play in the fog.
One day, the wealthy man saw that the fog was increasing. The fog was getting stronger and the weight on the man's body made it hard to walk. The man said, "Oh no, I need to find a place to stop."
The wealthy man walked and walked, looking for a safe place. Soon, he found a small house. To his surprise, the house was full of toys and candy! The man said, "I found this house of good value. I can keep all the toys and candy in it." And from that day on, the wealthy man never played in the fog again.
<s>
 Once upon a time, there was a little girl named Lily. She loved to play with her toys and sing songs. One day, Lily's friend Timmy came over to play.
"Hi Lily, do you want to play with my new toy car?" asked Timmy.
"Yay, thank you!" replied Lily.
But after a while, Lily started to feel sleep
achieved tok/s: 30.738912

就是这样啦。 WasmEdge 也将逐步支持 Llama2 7B 及更大的 model。

最后。 如果你有兴趣使用 Wasm 作为 Python 的高性能替代品在生产环境中进行 AI 推理,请查看我们基于Rust 的库 mediapipe-rs。 这是 Google 的 mediapipe 模型。同时支持 TF Lite 和 Pytorch!

https://github.com/WasmEdge/mediapipe-rshttps://github.com/WasmEdge/mediapipe-rs

相关推荐
中杯可乐多加冰1 分钟前
2025长沙1024程序员日:为开发者职业发展插上腾飞之翼
人工智能
8Qi83 分钟前
A Survey of Camouflaged Object Detection and Beyond论文阅读笔记
人工智能·深度学习·目标检测·计算机视觉·伪装目标检测
开发者导航6 分钟前
【开发者导航】全自动 AI 视频创作与发布工具:LuoGen-agent
人工智能·音视频
AI智能架构工坊10 分钟前
提升AI虚拟健康系统开发效率:架构师推荐10款低代码开发平台
android·人工智能·低代码·ai
AI规划师-南木12 分钟前
低代码开发医疗AI工具:5分钟搭建用药推荐系统,零基础也能落地
人工智能·深度学习·低代码·计算机视觉·推荐系统·rxjava·医疗ai
CareyWYR33 分钟前
每周AI论文速递(251020-251024)
人工智能
晚霞apple38 分钟前
Graph + Agents 融合架构:2025年七大创新路径
论文阅读·人工智能·深度学习·神经网络·机器学习
纪伊路上盛名在44 分钟前
如何批量获取蛋白质序列的所有结构域(domain)数据-2
数据库·人工智能·机器学习·统计·计算生物学·蛋白质
这张生成的图像能检测吗1 小时前
(论文速读)InteractVLM: 基于2D基础模型的3D交互推理
人工智能·计算机视觉·交互·生成模型·图像生成·视觉语言模型·3d重建
浣熊-论文指导1 小时前
人工智能与生物医药融合六大创新思路
论文阅读·人工智能·深度学习·计算机网络·机器学习