es 分页查询

1、from和size是查询所有数据,然后剔除不要的部分

复制代码
POST /my_index/my_type/_search
{
    "query": { "match_all": {}},
    "from": 100,
    "size":  10
}

2、scroll是记录了一个读取的位置,保证下一次快速继续读取

scroll

查询阶段:将查询的结果集,doc_id列表保存在了一个上下文里

fetch阶段:根据size取回即可

复制代码
POST /twitter/tweet/_search?scroll=1m
{
    "size": 100,
    "query": {
        "match" : {
            "title" : "elasticsearch"
        }
    }
}

Query阶段:每个shard将命中的结果( doc_id和_score) 按照 _score 顺序在上下文中创建一个优先队列快照,并通过scroll_id指向它,lastEmittedDoc指向上次访问的位置,最后将TOP(size)的doc id返回给协调节点。

Fetch阶段:协调节点将各个shard返回的结果再进行合并排序,最后通过doc_id查找返回结果的全量数据。之后更新各个分片上的上下文。

3、search_after

根据上一页最后一条数据来确定下一页的位置,因为每一页的数据依赖于上一页最后一条数据,所以无法完成跳页请求;在分页请求过程中如果有索引数据的增删改查,这些变更也会实时的反映到游标上。

核心思想记录上一次最后访问的位置

复制代码
GET twitter/_search
{
    "size": 10,
    "query": {
        "match" : {
            "title" : "es"
        }
    },
    "search_after": [124648691, "624812"],
    "sort": [
        {"date": "asc"},
        {"_id": "desc"}
    ]
}

ES的排序方式

在query阶段就要进行排序,不全量查询的情况下怎么排序的?

  • filter 查询 为 doc_id(Lucene 文件结构的当时索引时的先后顺序)
  • 按照相关性得分排序( _score)
  • 按照指定的字段排序 (term index中的顺序)

es默认分页查询方式

分页方式 性能 优点 缺点 场景
from + size 灵活性好,实现简单 深度分页问题 数据量比较小,能容忍深度分页问题
scroll 解决了深度分页问题 无法反应数据的实时性(快照版本)维护成本高,需要维护一个 scroll_id 海量数据的导出需要查询海量结果集的数据
search_after 性能最好不存在深度分页问题能够反映数据的实时变更 实现复杂,需要有一个全局唯一的字段连续分页的实现会比较复杂,因为每一次查询都需要上次查询的结果,它不适用于大幅度跳页查询

京东面试题:ElasticSearch深度分页解决方案

es分页查询原理_喂喂喂_java的博客-CSDN博客

相关推荐
n***632724 分钟前
MySQL数据库的数据文件保存在哪?MySQL数据存在哪里
数据库·mysql
SelectDB33 分钟前
从 Flink 到 Doris 的实时数据写入实践——基于 Flink CDC 构建更实时高效的数据集成链路
数据库
普通网友39 分钟前
使用Flask快速搭建轻量级Web应用
jvm·数据库·python
月上柳青43 分钟前
OpenWrt系统上配置batman-adv快速开始与配置详解
开发语言·mysql·php
t***26591 小时前
【大数据】MySQL与Elasticsearch的对比分析:如何选择适合的查询解决方案
大数据·mysql·elasticsearch
k***92161 小时前
redis连接服务
数据库·redis·bootstrap
T-BARBARIANS1 小时前
mariadb galera集群在Openstack中的应用
数据库·负载均衡
攻心的子乐1 小时前
redis分布式锁 多节点部署项目 Redisson 来做分布式锁
数据库·redis·分布式
java1234_小锋1 小时前
Redis线上操作最佳实践有哪些?
java·数据库·redis
普通网友1 小时前
Python函数定义与调用:编写可重用代码的基石
jvm·数据库·python