opencv-24 图像几何变换03-仿射-cv2.warpAffine()

什么是仿射?

仿射变换是指图像可以通过一系列的几何变换来实现平移、旋转等多种操作。该变换能够

保持图像的平直性和平行性。平直性是指图像经过仿射变换后,直线仍然是直线;平行性是指 图像在完成仿射变换后,平行线仍然是平行线。

OpenCV 中的仿射函数为 cv2.warpAffine(),其通过一个变换矩阵(映射矩阵)M 实现变换,

具体为:

dst(𝑥, 𝑦) = src(𝑀11𝑥 + 𝑀12𝑦 + 𝑀13, 𝑀21𝑥 + 𝑀22𝑦 + 𝑀23)

如图 5-2 所示,可以通过一个变换矩阵 M,将原始图像 O 变换为仿射图像 R

因此,可以采用仿射函数 cv2.warpAffine()实现对图像的旋转,该函数的语法格式如下:

复制代码
dst = cv2.warpAffine( src, M, dsize[, flags[, borderMode[, borderValue]]] )

式中:

dst 代表仿射后的输出图像,该图像的类型和原始图像的类型相同。

dsize 决定输出图像的实际大小。

src 代表要仿射的原始图像。

M 代表一个 2×3 的变换矩阵。使用不同的变换矩阵,就可以实现不同的仿射变换。

dsize 代表输出图像的尺寸大小。

flags 代表插值方法,默认为 INTER_LINEAR。当该值为 WARP_INVERSE_MAP 时,

意味着 M 是逆变换类型,实现从目标图像 dst 到原始图像 src 的逆变换。

 borderMode 代表边类型, 默认为 BORDER_CONSTANT 。 当 该值为 BORDER_TRANSPARENT 时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常

值。

 borderValue 代表边界值,默认是 0。

通过以上分析可知,在 OpenCV 中使用函数 cv2.warpAffine()实现仿射变换,忽略其可选参数后的语法格式为:

复制代码
dst = cv2.warpAffine( src , M , dsize )

其通过转换矩阵 M 将原始图像 src 转换为目标图像 dst:

复制代码
dst(𝑥, 𝑦) = src(𝑀11𝑥 + 𝑀12𝑦 + 𝑀13, 𝑀21𝑥 + 𝑀22𝑦 + 𝑀23)

因此,进行何种形式的仿射变换完全取决于转换矩阵 M。下面分别介绍通过不同的转换矩阵 M 实现的不同的仿射变换。

平移

通过转换矩阵 M 实现将原始图像 src 转换为目标图像 dst:

dst(𝑥, 𝑦) = src(𝑀11𝑥 + 𝑀12𝑦 + 𝑀13, 𝑀21𝑥 + 𝑀22𝑦 + 𝑀23)

将原始图像 src 向右侧移动 100 个像素、向下方移动 200 个像素,则其对应关系为:

dst (x, y) = src (x + 100, y + 200)

将上述表达式补充完整,即:

dst (x, y) = src (1·x + 0·y + 100, 0·x + 1·y + 200)

根据上述表达式,可以确定对应的转换矩阵 M 中各个元素的值为:

 M11=1

 M12=0

 M13=100

 M21=0

 M22=1

 M23=200

将上述值代入转换矩阵 M,得到:

在已知转换矩阵 M 的情况下,可以直接利用转换矩阵 M 调用函数 cv2.warpAffine() 完成图像的平移。

实验:利用自定义转换矩阵完成图像平移。

复制代码
import cv2
import numpy as np
img=cv2.imread("lena.png")
height,width=img.shape[:2]
x=100
y=200
M = np.float32([[1, 0, x], [0, 1, y]])
move=cv2.warpAffine(img,M,(width,height))
cv2.imshow("original",img)
cv2.imshow("move",move)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

其中左图是原始图像,右图是移动结果图像

旋转

在使用函数 cv2.warpAffine()对图像进行旋转时,可以通过函数 cv2.getRotationMatrix2D()

获取转换矩阵。该函数的语法格式为:

复制代码
retval=cv2.getRotationMatrix2D(center, angle, scale)

式中:
 center 为旋转的中心点。
 angle 为旋转角度,正数表示逆时针旋转,负数表示顺时针旋转。
 scale 为变换尺度(缩放大小)。

利用函数 cv2.getRotationMatrix2D()可以直接生成要使用的转换矩阵 M。

例如,想要以图像中心为圆点,逆时针旋转 45°,并将目标图像缩小为原始图像的 0.6 倍,则在调用函数

cv2.getRotationMatrix2D()生成转换矩阵 M 时所使用的语句为:

复制代码
M=cv2.getRotationMatrix2D((height/2,width/2),45,0.6)

实验2:完成图像旋转

代码:

复制代码
import cv2
import numpy as np
img=cv2.imread("lena.png")
height,width=img.shape[:2]
M=cv2.getRotationMatrix2D((width/2,height/2),45,0.6)
rotate=cv2.warpAffine(img,M,(width,height))
cv2.imshow("original",img)
cv2.imshow("rotation",rotate)
cv2.waitKey()
cv2.destroyAllWindows()

其中左图是原始图像,右图是旋转结果图像

更复杂的仿射变换

对于更复杂仿射变换,OpenCV 提供了

函数 cv2.getAffineTransform()来生成仿射函数 cv2.warpAffine()所使用的转换矩阵 M。该函数的语法格式为:

复制代码
retval=cv2.getAffineTransform(src, dst)

式中:

 src 代表输入图像的三个点坐标。

 dst 代表输出图像的三个点坐标。

在该函数中,其参数值 src 和 dst 是包含三个二维数组(x, y)点的数组。上述参数通过函数

cv2.getAffineTransform()定义了两个平行四边形。src 和 dst 中的三个点分别对应平行四边形的

左上角、右上角、左下角三个点。函数 cv2.warpAffine()以函数 cv2.getAffineTransform()获取的

转换矩阵 M 为参数,将 src 中的点仿射到 dst 中。函数 cv2.getAffineTransform()

对所指定的点完成映射后,将所有其他点的映射关系按照指定点的关系计算确定。

实验3:完成图像仿射

复制代码
import cv2
import numpy as np
img=cv2.imread('lena.png')
rows,cols,ch=img.shape
#定义三个点
p1=np.float32([[0,0],[cols-1,0],[0,rows-1]])

print(p1)
#定义三个点的变换位置
p2=np.float32([[0,rows*0.33],[cols*0.85,rows*0.25],[cols*0.15,rows*0.7]])
print(p2)
#生成变换矩阵
M=cv2.getAffineTransform(p1,p2)
#进行仿射变换
dst=cv2.warpAffine(img,M,(cols,rows))
cv2.imshow("origianl",img)
cv2.imshow("result",dst)
cv2.waitKey()
cv2.destroyAllWindows()

首先构造了两个三分量的点集合 p1 和 p2,分别用来指代原始图像和目标图像内平行四边形的三个顶点(左上角、右上角、左下角)。

然后使用
M=cv2.getAffineTransform(p1,p2)

获取转换矩阵 M。接下来,
dst=cv2.warpAffine(img,M,(cols,rows))

完成了从原始图像到目标图像的仿射。

运行结果:

其中左图是原始图像,右图是仿射结果图像

相关推荐
草莓熊Lotso1 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_3 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱5 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º6 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee8 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º9 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys9 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56789 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子9 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能10 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算