pytorch工具——使用pytorch构建一个神经网络

目录

构建模型

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        #定义第一层卷积层,输入维度=1,输出维度=6,卷积核大小3*3
        self.conv1=nn.Conv2d(1,6,3)
        self.conv2=nn.Conv2d(6,16,3)
        self.fc1=nn.Linear(16*6*6,120)
        self.fc2=nn.Linear(120,84)
        self.fc3=nn.Linear(84,10)
        
    def forward(self,x):
        #注意:任意卷积层后面要加激活层,池化层
        x=F.max_pool2d(F.relu(self.conv1(x),(2,2)))
        x=F.max_pool2d(F.relu(self.conv2(x),2))
        x=x.view(-1,self.num_flat_features(x))
        x=F.relu(self.fc1(x))
        x=F.relu(self.fc2(x))
        x=self.fc3(x)
        return x
    
    def num_flat_features(self,x):
        size=x.size()[1:]
        num_features=1
        for s in size:
            num_features*=s
        return num_features
    
net=Net()
print(net)

模型中的可训练参数

python 复制代码
params=list(net.parameters())
print(len(params))
print(params[0].size()) #conv1的参数

假设输入尺寸为32*32

python 复制代码
input=torch.randn(1,1,32,32) #个数,通道数,长,宽
out=net(input)
print(out)
print(out.size())


注意

损失函数

python 复制代码
target=torch.randn(10)
target=target.view(1,-1)
criterion=nn.MSELoss()
loss=criterion(out,target)
print(loss)
python 复制代码
print(loss.grad_fn)
print(loss.grad_fn.next_functions[0][0]) #上一层的grad_fn
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) #上上一层的grad_fn

反向传播

python 复制代码
#首先要执行梯度清零的操作
net.zero_grad()

print('conv1.bisa.grad before backward')
print(net.conv1.bias.grad)

#实现一次反向传播
loss.backward()

print('conv1.bisa.grad after backward')
print(net.conv1.bias.grad)

更新网络参数

python 复制代码
#导入优化器包
import torch.optim as optim
#构建优化器
optimizer=optim.SGD(net.parameters(),lr=0.01)
#优化器梯度清零
optimizer.zero_grad()
#进行网络计算并计算损失值
output=net(input)
loss=criterion(output,target)
#执行反向传播
loss.backward()
#更新参数
optimizer.step()
相关推荐
小雷FansUnion8 分钟前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周11 分钟前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享1 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜1 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿1 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_2 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1232 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷2 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手2 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野2 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能