pytorch工具——使用pytorch构建一个神经网络

目录

构建模型

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        #定义第一层卷积层,输入维度=1,输出维度=6,卷积核大小3*3
        self.conv1=nn.Conv2d(1,6,3)
        self.conv2=nn.Conv2d(6,16,3)
        self.fc1=nn.Linear(16*6*6,120)
        self.fc2=nn.Linear(120,84)
        self.fc3=nn.Linear(84,10)
        
    def forward(self,x):
        #注意:任意卷积层后面要加激活层,池化层
        x=F.max_pool2d(F.relu(self.conv1(x),(2,2)))
        x=F.max_pool2d(F.relu(self.conv2(x),2))
        x=x.view(-1,self.num_flat_features(x))
        x=F.relu(self.fc1(x))
        x=F.relu(self.fc2(x))
        x=self.fc3(x)
        return x
    
    def num_flat_features(self,x):
        size=x.size()[1:]
        num_features=1
        for s in size:
            num_features*=s
        return num_features
    
net=Net()
print(net)

模型中的可训练参数

python 复制代码
params=list(net.parameters())
print(len(params))
print(params[0].size()) #conv1的参数

假设输入尺寸为32*32

python 复制代码
input=torch.randn(1,1,32,32) #个数,通道数,长,宽
out=net(input)
print(out)
print(out.size())


注意

损失函数

python 复制代码
target=torch.randn(10)
target=target.view(1,-1)
criterion=nn.MSELoss()
loss=criterion(out,target)
print(loss)
python 复制代码
print(loss.grad_fn)
print(loss.grad_fn.next_functions[0][0]) #上一层的grad_fn
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) #上上一层的grad_fn

反向传播

python 复制代码
#首先要执行梯度清零的操作
net.zero_grad()

print('conv1.bisa.grad before backward')
print(net.conv1.bias.grad)

#实现一次反向传播
loss.backward()

print('conv1.bisa.grad after backward')
print(net.conv1.bias.grad)

更新网络参数

python 复制代码
#导入优化器包
import torch.optim as optim
#构建优化器
optimizer=optim.SGD(net.parameters(),lr=0.01)
#优化器梯度清零
optimizer.zero_grad()
#进行网络计算并计算损失值
output=net(input)
loss=criterion(output,target)
#执行反向传播
loss.backward()
#更新参数
optimizer.step()
相关推荐
Jamence14 分钟前
多模态大语言模型arxiv论文略读(113)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
haf-Lydia19 分钟前
金融科技的数字底座
人工智能·科技·金融
shengjk122 分钟前
多智能体大语言模型系统频频翻车?三大失败根源与解决方案全解析
人工智能
北极的树24 分钟前
谁说AI只会模仿,从Google AlphaEvolve项目看算法的自主创新
人工智能·算法·gemini
安思派Anspire28 分钟前
用 LangGraph 构建第一个 AI 智能体完全指南(一)
人工智能
广州正荣29 分钟前
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
人工智能·爬虫·科技
加油搞钱加油搞钱31 分钟前
鹰盾加密器基于AI的视频个性化压缩技术深度解析:从智能分析到无损压缩实践
人工智能·音视频·视频加密·鹰盾加密·鹰盾播放器
Baihai_IDP33 分钟前
OCR 识别质量如何影响 RAG 系统的性能?有何解决办法?
人工智能·llm·aigc
新智元35 分钟前
20 人团队提前实现 DeepSeek 构想,AI 算力变天?直击大模型算力成本痛点
人工智能·openai
硬核隔壁老王40 分钟前
从零开始搭建RAG系统系列(十):RAG系统性能优化技巧-生成模块优化 (Optimizing Generator)
人工智能·程序员·llm