深入浅出Pytorch函数——torch.Tensor.backward

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


计算当前张量相对于图的梯度,该函数使用链式法则对图进行微分。如果张量不是一个标量(即其数据具有多个元素)并且需要梯度,则函数还需要指定梯度。它应该是一个匹配类型和位置的张量,包含微分函数的梯度。此函数在累积了图中各叶子结点的梯度,在调用它之前,您可能需要使用zero.grad清零属性或将其设置为None

语法

dart 复制代码
Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None)

参数

  • gradient:[Tensor/None] 相对张量的梯度。如果它是张量,它将自动转换为不需要grad的张量,除非create_graphTrue。对于标量或不需要梯度的张量应指定为None
  • retain_graph:[可选, bool] 如果为False,则用于计算梯度的图将被释放。请注意,在几乎所有情况下,都不需要将此选项设置为True,而且通常可以以更有效的方式解决。默认为create_graph的值。
  • create_graph:[可选, bool] 如果为True,将构建导数的图,从而可以计算更高阶的导数乘积,默认值为False
  • inputs:[List[Tensor]] 输入张量的梯度将累积为.grad。所有其他张量都将被忽略。如果没有提供,梯度将累积到用于计算的所有叶张量中。
相关推荐
后端小肥肠25 分钟前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
每日新鲜事32 分钟前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_38 分钟前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅1 小时前
对 AI Native 架构的一些思考
人工智能
LinQingYanga1 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip2 小时前
过去24小时AI创业趋势分析
人工智能
SEO_juper2 小时前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo
pp起床2 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
方见华Richard2 小时前
自指-认知几何架构 可行性边界白皮书(务实版)
人工智能·经验分享·交互·原型模式·空间计算
冬奇Lab2 小时前
AI时代的"工具自由":我是如何进入细糠时代的
人工智能·ai编程