深入浅出Pytorch函数——torch.Tensor.backward

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


计算当前张量相对于图的梯度,该函数使用链式法则对图进行微分。如果张量不是一个标量(即其数据具有多个元素)并且需要梯度,则函数还需要指定梯度。它应该是一个匹配类型和位置的张量,包含微分函数的梯度。此函数在累积了图中各叶子结点的梯度,在调用它之前,您可能需要使用zero.grad清零属性或将其设置为None

语法

dart 复制代码
Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None)

参数

  • gradient:[Tensor/None] 相对张量的梯度。如果它是张量,它将自动转换为不需要grad的张量,除非create_graphTrue。对于标量或不需要梯度的张量应指定为None
  • retain_graph:[可选, bool] 如果为False,则用于计算梯度的图将被释放。请注意,在几乎所有情况下,都不需要将此选项设置为True,而且通常可以以更有效的方式解决。默认为create_graph的值。
  • create_graph:[可选, bool] 如果为True,将构建导数的图,从而可以计算更高阶的导数乘积,默认值为False
  • inputs:[List[Tensor]] 输入张量的梯度将累积为.grad。所有其他张量都将被忽略。如果没有提供,梯度将累积到用于计算的所有叶张量中。
相关推荐
昨日之日200644 分钟前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_7 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习