深入浅出Pytorch函数——torch.Tensor.backward

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


计算当前张量相对于图的梯度,该函数使用链式法则对图进行微分。如果张量不是一个标量(即其数据具有多个元素)并且需要梯度,则函数还需要指定梯度。它应该是一个匹配类型和位置的张量,包含微分函数的梯度。此函数在累积了图中各叶子结点的梯度,在调用它之前,您可能需要使用zero.grad清零属性或将其设置为None

语法

dart 复制代码
Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None)

参数

  • gradient:[Tensor/None] 相对张量的梯度。如果它是张量,它将自动转换为不需要grad的张量,除非create_graphTrue。对于标量或不需要梯度的张量应指定为None
  • retain_graph:[可选, bool] 如果为False,则用于计算梯度的图将被释放。请注意,在几乎所有情况下,都不需要将此选项设置为True,而且通常可以以更有效的方式解决。默认为create_graph的值。
  • create_graph:[可选, bool] 如果为True,将构建导数的图,从而可以计算更高阶的导数乘积,默认值为False
  • inputs:[List[Tensor]] 输入张量的梯度将累积为.grad。所有其他张量都将被忽略。如果没有提供,梯度将累积到用于计算的所有叶张量中。
相关推荐
油泼辣子多加13 分钟前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
数据皮皮侠17 分钟前
2m气温数据集(1940-2024)
大数据·数据库·人工智能·制造·微信开放平台
lzhdim27 分钟前
魅族手机介绍
人工智能·智能手机
Debroon30 分钟前
现代医疗中的AI智能体
人工智能
Winner130030 分钟前
查看rk3566摄像头设备、能力、支持格式
linux·网络·人工智能
shizhenshide43 分钟前
“绕过”与“破解”的成本账:自行研发、购买API与外包打码的性价比全分析
人工智能·验证码·recaptcha·ezcaptcha·recaptcha v2
龙腾亚太1 小时前
大模型在工业物流领域有哪些应用
人工智能·具身智能·智能体·世界模型·智能体培训·具身智能培训
Deepoch1 小时前
智能清洁新纪元:Deepoc开发板如何重塑扫地机器人的“大脑“
人工智能·机器人·清洁机器人·具身模型·deepoc
装不满的克莱因瓶1 小时前
【Coze智能体实战二】一键生成儿歌背单词视频
人工智能·ai·实战·agent·工作流·智能体·coze
杰米不放弃1 小时前
AI大模型应用开发学习-26【20251227】
人工智能·学习