深入浅出Pytorch函数——torch.Tensor.backward

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


计算当前张量相对于图的梯度,该函数使用链式法则对图进行微分。如果张量不是一个标量(即其数据具有多个元素)并且需要梯度,则函数还需要指定梯度。它应该是一个匹配类型和位置的张量,包含微分函数的梯度。此函数在累积了图中各叶子结点的梯度,在调用它之前,您可能需要使用zero.grad清零属性或将其设置为None

语法

dart 复制代码
Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None)

参数

  • gradient:[Tensor/None] 相对张量的梯度。如果它是张量,它将自动转换为不需要grad的张量,除非create_graphTrue。对于标量或不需要梯度的张量应指定为None
  • retain_graph:[可选, bool] 如果为False,则用于计算梯度的图将被释放。请注意,在几乎所有情况下,都不需要将此选项设置为True,而且通常可以以更有效的方式解决。默认为create_graph的值。
  • create_graph:[可选, bool] 如果为True,将构建导数的图,从而可以计算更高阶的导数乘积,默认值为False
  • inputs:[List[Tensor]] 输入张量的梯度将累积为.grad。所有其他张量都将被忽略。如果没有提供,梯度将累积到用于计算的所有叶张量中。
相关推荐
哥布林学者2 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(五)GloVe 算法
深度学习·ai
kuiini2 小时前
模型转换、加速与推理优化【Plan 8】
深度学习
Quintus五等升2 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146042 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
天天讯通3 小时前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
飞Link3 小时前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
夜勤月4 小时前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全
万物得其道者成4 小时前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux
码农三叔4 小时前
(3-2)机器人身体结构与人体仿生学:人形机器人躯干系统
人工智能·架构·机器人·人形机器人
bleuesprit4 小时前
LLM语言模型Lora微调
人工智能·语言模型·lora