深入浅出Pytorch函数——torch.Tensor.backward

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


计算当前张量相对于图的梯度,该函数使用链式法则对图进行微分。如果张量不是一个标量(即其数据具有多个元素)并且需要梯度,则函数还需要指定梯度。它应该是一个匹配类型和位置的张量,包含微分函数的梯度。此函数在累积了图中各叶子结点的梯度,在调用它之前,您可能需要使用zero.grad清零属性或将其设置为None

语法

dart 复制代码
Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None)

参数

  • gradient:[Tensor/None] 相对张量的梯度。如果它是张量,它将自动转换为不需要grad的张量,除非create_graphTrue。对于标量或不需要梯度的张量应指定为None
  • retain_graph:[可选, bool] 如果为False,则用于计算梯度的图将被释放。请注意,在几乎所有情况下,都不需要将此选项设置为True,而且通常可以以更有效的方式解决。默认为create_graph的值。
  • create_graph:[可选, bool] 如果为True,将构建导数的图,从而可以计算更高阶的导数乘积,默认值为False
  • inputs:[List[Tensor]] 输入张量的梯度将累积为.grad。所有其他张量都将被忽略。如果没有提供,梯度将累积到用于计算的所有叶张量中。
相关推荐
腾视科技1 小时前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
极新1 小时前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
Light606 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升6 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide6 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农6 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews7 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体7 小时前
机器人的罪与罚
人工智能·机器人
三不原则7 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM7 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用