算法训练营第四十九天||● 121. 买卖股票的最佳时机 ● 122.买卖股票的最佳时机II

● 121. 买卖股票的最佳时机

暴力和贪心都可以解决

主要讲解动态规划

dp数组:我们把dp数组定义为一个二维的vector容器

dp[i][0]表示第i天持有股票手中的金额:它可以是当天买入的也可以是之前买入的

dp[i][1]表示第i天不持有股票手中的金额:可以是当天卖出的也可以是之前卖出的

初始化:

dp[0][0]:第0天就持有股票,说明它第0天买入了股票 此时手中现金为 -peices[0]

dp[0][1]:第0天不持有股票,说明它既没有买入也没有卖出 手中现金为0。

遍历顺序:从前往后 后一天由前一天推导出。

递推公式:

dp[i][0]=max(dp[i-1][0],prices[i])

dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]);

最后返回值:就是最后一天不持有股票的手中的最大现金

复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(prices.size()+1,vector<int>{0,0});
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1;i<prices.size();i++){
            dp[i][0] = max(dp[i-1][0],-prices[i]);//第i天不持有股票的最大金额
            dp[i][1] = max(dp[i-1][1],prices[i]+dp[i-1][0]);//第i天持有股票的最大金额
        }
        return max(dp[prices.size()-1][0],dp[prices.size()-1][1]);
    }
};

● 122.买卖股票的最佳时机II

与上一题的唯一区别就是 股票可以买卖多次,递推公式的时候略微有点变化

dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);

是由前一天持有股票,或者前一天不持有股票今天买入的最大值组成 ,此时前一天不持有股票手中现金不再是0而是dp[i-1][1]

dp[i][1]与上一道题完全相同。

复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(prices.size()+1,vector<int>{0,0});
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1;i<prices.size();i++){
            dp[i][0] = max(dp[i-1][0],dp[i-1][1]-prices[i]);
            dp[i][1] = max(dp[i-1][1],dp[i-1][0]+prices[i]);
        }
        return dp[prices.size()-1][1];
    }
};
相关推荐
猿究院--王升12 分钟前
jvm三色标记
java·jvm·算法
一车小面包27 分钟前
逻辑回归 从0到1
算法·机器学习·逻辑回归
tt5555555555552 小时前
字符串与算法题详解:最长回文子串、IP 地址转换、字符串排序、蛇形矩阵与字符串加密
c++·算法·矩阵
元亓亓亓3 小时前
LeetCode热题100--101. 对称二叉树--简单
算法·leetcode·职场和发展
不会学习?3 小时前
算法03 归并分治
算法
NuyoahC4 小时前
笔试——Day43
c++·算法·笔试
2301_821919924 小时前
决策树8.19
算法·决策树·机器学习
秋难降4 小时前
别再用暴力排序了!大小顶堆让「取极值」效率飙升至 O (log n)
python·算法·排序算法
学行库小秘5 小时前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
_meow_5 小时前
数学建模 15 逻辑回归与随机森林
算法·数学建模·逻辑回归