自然语言处理从入门到应用——LangChain:模型(Models)-[聊天模型(Chat Models):使用少量示例和响应流式传输]

分类目录:《自然语言处理从入门到应用》总目录


使用少量示例

本部分的内容介绍了如何在聊天模型(Chat Models)中使用少量示例。关于如何最好地进行少量示例提示尚未形成明确的共识。因此,我们尚未固定任何关于此的抽象概念,而是使用现有的抽象概念。

交替的人工智能/人类消息

进行少量示例提示的第一种方式是使用交替的人工智能/人类消息。以下是一个示例:

dart 复制代码
from langchain.chat_models import ChatOpenAI
from langchain import PromptTemplate, LLMChain
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

chat = ChatOpenAI(temperature=0)

template="You are a helpful assistant that translates english to pirate."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
example_human = HumanMessagePromptTemplate.from_template("Hi")
example_ai = AIMessagePromptTemplate.from_template("Argh me mateys")
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])

chain = LLMChain(llm=chat, prompt=chat_prompt)

# 从格式化的消息中获取聊天完成结果
chain.run("I love programming.")

输出:

dart 复制代码
"I be lovin' programmin', me hearty!"
系统消息

OpenAI提供了一个可选的name参数,我们也建议与系统消息一起使用以进行少量示例提示。以下是如何使用此功能的示例:

dart 复制代码
template="You are a helpful assistant that translates english to pirate."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
example_human = SystemMessagePromptTemplate.from_template("Hi", additional_kwargs={"name": "example_user"})
example_ai = SystemMessagePromptTemplate.from_template("Argh me mateys", additional_kwargs={"name": "example_assistant"})
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt)

# 从格式化的消息中获取聊天完成结果
chain.run("I love programming.")

输出:

dart 复制代码
"I be lovin' programmin', me hearty!"

响应流式传输

本部分介绍了如何在聊天模型中使用流式传输:

dart 复制代码
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
    HumanMessage,
)
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
chat = ChatOpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0)
resp = chat([HumanMessage(content="Write me a song about sparkling water.")])

输出:

dart 复制代码
Verse 1:
Bubbles rising to the top
A refreshing drink that never stops
Clear and crisp, it's pure delight
A taste that's sure to excite

Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe

Verse 2:
No sugar, no calories, just pure bliss
A drink that's hard to resist
It's the perfect way to quench my thirst
A drink that always comes first

Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe

Bridge:
From the mountains to the sea
Sparkling water, you're the key
To a healthy life, a happy soul
A drink that makes me feel whole

Chorus:
Sparkling water, oh so fine
A drink that's always on my mind
With every sip, I feel alive
Sparkling water, you're my vibe

Outro:
Sparkling water, you're the one
A drink that's always so much fun
I'll never let you go, my friend
Sparkling

参考文献:

1\] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/ \[2\] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关推荐
轻松Ai享生活3 分钟前
从0-1学习CUDA | week 1
人工智能
蒋星熠5 分钟前
C++零拷贝网络编程实战:从理论到生产环境的性能优化之路
网络·c++·人工智能·深度学习·性能优化·系统架构
wayman_he_何大民9 分钟前
初始机器学习算法 - 关联分析
前端·人工智能
杭州泽沃电子科技有限公司16 分钟前
告别翻山越岭!智能监拍远程守护输电线路安全
运维·人工智能·科技·安全
wayman_he_何大民19 分钟前
初始机器学习算法 - 聚类分析
前端·人工智能
TDengine (老段)26 分钟前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
curdcv_po26 分钟前
😲AI 💪🏻超级 整合时代 已经 到来~
人工智能·trae
*星星之火*32 分钟前
【GPT入门】第47课 大模型量化中 float32/float16/uint8/int4 的区别解析:从位数到应用场景
人工智能·gpt
aneasystone本尊1 小时前
学习 Coze Studio 的工作流执行逻辑
人工智能
aneasystone本尊1 小时前
再学 Coze Studio 的智能体执行逻辑
人工智能