OpenCV系列__chapter2

这里写目录标题

    • [1 图像加减乘除位运算](#1 图像加减乘除位运算)
      • [1.1 加法 img = cv2.add(img1, img2)](#1.1 加法 img = cv2.add(img1, img2))
      • [1.2 减法 img = cv2.subtract(img1, img2)](#1.2 减法 img = cv2.subtract(img1, img2))
      • [1.3 乘法 img = cv2.multiply(img1, img2)](#1.3 乘法 img = cv2.multiply(img1, img2))
      • [1.4 除法 img = cv2.divide(img1, img2)](#1.4 除法 img = cv2.divide(img1, img2))
      • [1.5 位运算 cv2.bitwise_and()](#1.5 位运算 cv2.bitwise_and())
    • [2 图像增强](#2 图像增强)
      • [2.1 线性变换](#2.1 线性变换)
      • [2.2 非线性变换](#2.2 非线性变换)
    • [3 图像几何变换](#3 图像几何变换)
      • [3.1 裁剪、放大、缩小](#3.1 裁剪、放大、缩小)
      • [3.2 平移变换](#3.2 平移变换)
      • [3.3 错切变换](#3.3 错切变换)
      • [3.4 镜像变换](#3.4 镜像变换)
      • [3.5 旋转变换](#3.5 旋转变换)
      • [3.6 透视变换](#3.6 透视变换)
      • [3.7 最近邻插值、双线性插值](#3.7 最近邻插值、双线性插值)

1 图像加减乘除位运算

1.1 加法 img = cv2.add(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',-1)
noise = np.random.randint(0,255,lena.shape,dtype=np.uint8)
img_add = lena+noise
img_cv_add = cv2.add(lena,noise)

plt.subplot(221)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(222)
plt.title('noise')
plt.imshow(noise[...,::-1])
plt.subplot(223)
plt.title('img_add')
plt.imshow(img_add[...,::-1])
plt.subplot(224)
plt.title('img_cv_add')
plt.imshow(img_cv_add[...,::-1])
plt.show()

1.2 减法 img = cv2.subtract(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

img_0 = cv2.imread('34.jpeg',-1)
img_1 = cv2.imread('35.jpeg',-1)
img_sub = cv2.subtract(img_0, img_1)

plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0[...,::-1])
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1[...,::-1])
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub[...,::-1])
plt.show()
python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

img_0 = cv2.imread('img_no.png',0)
img_1 = cv2.imread('sub.png',0)
img_sub = cv2.subtract(img_0, img_1)

plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0,cmap='gray')
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1,cmap='gray')
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub,cmap='gray')
plt.show()

1.3 乘法 img = cv2.multiply(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',-1)
mask = np.zeros_like(lena,np.uint8)
mask[204:392,213:354] = 1
img_mul = cv2.multiply(lena, mask)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('img_mul')
plt.imshow(img_mul[...,::-1])
plt.show()

1.4 除法 img = cv2.divide(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',0)
img_noise = cv2.circle(lena.copy(),(280,300),150,(0,255,0),10)
img_div = cv2.divide(img_noise,lena)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena,cmap='gray')
plt.subplot(132)
plt.title('img_noise')
plt.imshow(img_noise,cmap='gray')
plt.subplot(133)
plt.title('img_div')
plt.imshow(img_div,cmap='gray')
plt.show()

1.5 位运算 cv2.bitwise_and()

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',1)
mask = np.zeros_like(lena,dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,mask)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()
python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',1)
mask = np.zeros(lena.shape[:2],dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,lena,mask=mask)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask,'gray')
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

2 图像增强

2.1 线性变换

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('lianhua.png',1)
re = img*2+10
re = re.astype(np.uint8)
re1 = cv2.convertScaleAbs(img, alpha=2, beta=10)

plt.subplot(131)
plt.title('img')
plt.imshow(img[...,::-1])
plt.subplot(132)
plt.title('re0')
plt.imshow(re0[...,::-1])
plt.subplot(133)
plt.title('re1')
plt.imshow(re1[...,::-1])
plt.show()

2.2 非线性变换

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

## 1 gamma
def gamma_aug(img,c,gamma):
  gamma_table=[c*np.power(x/255.0,gamma)*255.0 for x in range(256)]
  gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)
  return cv2.LUT(img,gamma_table)


## 2 log
def log_aug(img,c,r):
  gamma_table=[c*np.log10(1+x/255.0*r)*255.0 for x in range(256)]
  gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)
  return cv2.LUT(img,gamma_table)

if __name__ == '__main__':
  img = cv2.imread('lianhua.png',1)
  img11 =  gamma_aug(img,c=1,gamma=0.1)
  img12 = gamma_aug(img, c=1, gamma=0.8)
  img21 = log_aug(img, c=1, r=10)
  img22 = log_aug(img, c=2, r=10)

  plt.subplot(231)
  plt.title('img')
  plt.imshow(img[...,::-1])
  plt.subplot(232)
  plt.title('img11')
  plt.imshow(img11[..., ::-1])
  plt.subplot(233)
  plt.title('img12')
  plt.imshow(img12[..., ::-1])
  plt.subplot(234)
  plt.title('img')
  plt.imshow(img[...,::-1])
  plt.subplot(235)
  plt.title('img21')
  plt.imshow(img21[..., ::-1])
  plt.subplot(236)
  plt.title('img22')
  plt.imshow(img22[..., ::-1])
  plt.show()

3 图像几何变换

3.1 裁剪、放大、缩小

(1) 公式缩放

python 复制代码
'''
dst = cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR)
参数:
 src : 输入图像
 dsize: 绝对尺寸,直接指定调整后图像的大小
 fx,fy: 相对尺寸,将dsize设置为None,然后将fx和fy设置为比例因子即可
 interpolation:插值方法(INTER_NEAREST,INTER_LINEAR)
'''

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('lenacolor.png',1)
img1 = cv2.resize(img,(100,100))           # dsize
img2 = cv2.resize(img,None,fx=0.5,fy=0.5)  # fx,fy

plt.subplot(131)
plt.title(f'img.shape:{format(img.shape[:2])}')
plt.imshow(img[..., ::-1])
plt.subplot(132)
plt.title(f'img1.shape:{format(img1.shape[:2])}')
plt.imshow(img1[..., ::-1])
plt.subplot(133)
plt.title(f'img2.shape:{format(img2.shape[:2])}')
plt.imshow(img2[..., ::-1])
plt.show()

(2) 最近邻源码缩放

python 复制代码
'''
 img[100,100,3] --> img1 [10,10,3]  scale = 10/100   (5,5)-->5/scale -->(50,50)
'''
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('lenacolor.png',1)
h,w,c = img.shape
h1,w1,d = 100,200,c
h_scale = h1*1.0/h
w_scale = w1*1.0/w
img_new = np.zeros([h1,w1,d],np.uint8)

for i in range(h1):
 for j in range(w1):
     img_new[i,j] = img[int(i/h_scale),int(j/w_scale)]

plt.subplot(121)
plt.title(f'img.shape:{format(img.shape[:2])}')
plt.imshow(img[..., ::-1])
plt.subplot(122)
plt.title(f'img_new.shape:{format(img_new.shape[:2])}')
plt.imshow(img_new[..., ::-1])

(3) 最近邻

python 复制代码

3.2 平移变换

python 复制代码

3.3 错切变换

python 复制代码

3.4 镜像变换

python 复制代码

3.5 旋转变换

python 复制代码

3.6 透视变换

python 复制代码

3.7 最近邻插值、双线性插值

python 复制代码
相关推荐
Dfreedom.6 分钟前
在Windows上搭建GPU版本PyTorch运行环境的详细步骤
c++·人工智能·pytorch·python·深度学习
confiself15 分钟前
AndroidWorld+mobileRL
人工智能·深度学习
aneasystone本尊24 分钟前
学习 Chat2Graph 的任务分解与执行
人工智能
嘀咕博客25 分钟前
10Web-AI网站生成器
人工智能·ai工具
西柚小萌新31 分钟前
【从零开始的大模型原理与实践教程】--第一章:NLP基础概念
人工智能·自然语言处理
人生游戏牛马NPC1号36 分钟前
学习 Android (二十一) 学习 OpenCV (六)
android·opencv·学习
嘀咕博客37 分钟前
SafeEar:浙大和清华联合推出的AI音频伪造检测框架,错误率低至2.02%
人工智能·音视频·ai工具
深度学习lover37 分钟前
<数据集>yolo梨幼果识别数据集<目标检测>
python·yolo·目标检测·计算机视觉·数据集
Hello123网站37 分钟前
FinChat-金融领域的ChatGPT
人工智能·chatgpt·金融·ai工具
嘀咕博客42 分钟前
PixVerse -免费在线AI视频生成工具
人工智能·音视频·ai工具