OpenCV系列__chapter2

这里写目录标题

    • [1 图像加减乘除位运算](#1 图像加减乘除位运算)
      • [1.1 加法 img = cv2.add(img1, img2)](#1.1 加法 img = cv2.add(img1, img2))
      • [1.2 减法 img = cv2.subtract(img1, img2)](#1.2 减法 img = cv2.subtract(img1, img2))
      • [1.3 乘法 img = cv2.multiply(img1, img2)](#1.3 乘法 img = cv2.multiply(img1, img2))
      • [1.4 除法 img = cv2.divide(img1, img2)](#1.4 除法 img = cv2.divide(img1, img2))
      • [1.5 位运算 cv2.bitwise_and()](#1.5 位运算 cv2.bitwise_and())
    • [2 图像增强](#2 图像增强)
      • [2.1 线性变换](#2.1 线性变换)
      • [2.2 非线性变换](#2.2 非线性变换)
    • [3 图像几何变换](#3 图像几何变换)
      • [3.1 裁剪、放大、缩小](#3.1 裁剪、放大、缩小)
      • [3.2 平移变换](#3.2 平移变换)
      • [3.3 错切变换](#3.3 错切变换)
      • [3.4 镜像变换](#3.4 镜像变换)
      • [3.5 旋转变换](#3.5 旋转变换)
      • [3.6 透视变换](#3.6 透视变换)
      • [3.7 最近邻插值、双线性插值](#3.7 最近邻插值、双线性插值)

1 图像加减乘除位运算

1.1 加法 img = cv2.add(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',-1)
noise = np.random.randint(0,255,lena.shape,dtype=np.uint8)
img_add = lena+noise
img_cv_add = cv2.add(lena,noise)

plt.subplot(221)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(222)
plt.title('noise')
plt.imshow(noise[...,::-1])
plt.subplot(223)
plt.title('img_add')
plt.imshow(img_add[...,::-1])
plt.subplot(224)
plt.title('img_cv_add')
plt.imshow(img_cv_add[...,::-1])
plt.show()

1.2 减法 img = cv2.subtract(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

img_0 = cv2.imread('34.jpeg',-1)
img_1 = cv2.imread('35.jpeg',-1)
img_sub = cv2.subtract(img_0, img_1)

plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0[...,::-1])
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1[...,::-1])
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub[...,::-1])
plt.show()
python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

img_0 = cv2.imread('img_no.png',0)
img_1 = cv2.imread('sub.png',0)
img_sub = cv2.subtract(img_0, img_1)

plt.subplot(131)
plt.title('img_0')
plt.imshow(img_0,cmap='gray')
plt.subplot(132)
plt.title('img_1')
plt.imshow(img_1,cmap='gray')
plt.subplot(133)
plt.title('img_sub')
plt.imshow(img_sub,cmap='gray')
plt.show()

1.3 乘法 img = cv2.multiply(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',-1)
mask = np.zeros_like(lena,np.uint8)
mask[204:392,213:354] = 1
img_mul = cv2.multiply(lena, mask)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('img_mul')
plt.imshow(img_mul[...,::-1])
plt.show()

1.4 除法 img = cv2.divide(img1, img2)

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',0)
img_noise = cv2.circle(lena.copy(),(280,300),150,(0,255,0),10)
img_div = cv2.divide(img_noise,lena)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena,cmap='gray')
plt.subplot(132)
plt.title('img_noise')
plt.imshow(img_noise,cmap='gray')
plt.subplot(133)
plt.title('img_div')
plt.imshow(img_div,cmap='gray')
plt.show()

1.5 位运算 cv2.bitwise_and()

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',1)
mask = np.zeros_like(lena,dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,mask)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask[...,::-1])
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()
python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

lena = cv2.imread('lenacolor.png',1)
mask = np.zeros(lena.shape[:2],dtype=np.uint8)
mask = cv2.circle(mask,(280,280),111,(255,255,255),-1)
re = cv2.bitwise_and(lena,lena,mask=mask)

plt.subplot(131)
plt.title('lena')
plt.imshow(lena[...,::-1])
plt.subplot(132)
plt.title('mask')
plt.imshow(mask,'gray')
plt.subplot(133)
plt.title('re')
plt.imshow(re[...,::-1])
plt.show()

2 图像增强

2.1 线性变换

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('lianhua.png',1)
re = img*2+10
re = re.astype(np.uint8)
re1 = cv2.convertScaleAbs(img, alpha=2, beta=10)

plt.subplot(131)
plt.title('img')
plt.imshow(img[...,::-1])
plt.subplot(132)
plt.title('re0')
plt.imshow(re0[...,::-1])
plt.subplot(133)
plt.title('re1')
plt.imshow(re1[...,::-1])
plt.show()

2.2 非线性变换

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

## 1 gamma
def gamma_aug(img,c,gamma):
  gamma_table=[c*np.power(x/255.0,gamma)*255.0 for x in range(256)]
  gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)
  return cv2.LUT(img,gamma_table)


## 2 log
def log_aug(img,c,r):
  gamma_table=[c*np.log10(1+x/255.0*r)*255.0 for x in range(256)]
  gamma_table=np.round(np.array(gamma_table)).astype(np.uint8)
  return cv2.LUT(img,gamma_table)

if __name__ == '__main__':
  img = cv2.imread('lianhua.png',1)
  img11 =  gamma_aug(img,c=1,gamma=0.1)
  img12 = gamma_aug(img, c=1, gamma=0.8)
  img21 = log_aug(img, c=1, r=10)
  img22 = log_aug(img, c=2, r=10)

  plt.subplot(231)
  plt.title('img')
  plt.imshow(img[...,::-1])
  plt.subplot(232)
  plt.title('img11')
  plt.imshow(img11[..., ::-1])
  plt.subplot(233)
  plt.title('img12')
  plt.imshow(img12[..., ::-1])
  plt.subplot(234)
  plt.title('img')
  plt.imshow(img[...,::-1])
  plt.subplot(235)
  plt.title('img21')
  plt.imshow(img21[..., ::-1])
  plt.subplot(236)
  plt.title('img22')
  plt.imshow(img22[..., ::-1])
  plt.show()

3 图像几何变换

3.1 裁剪、放大、缩小

(1) 公式缩放

python 复制代码
'''
dst = cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR)
参数:
 src : 输入图像
 dsize: 绝对尺寸,直接指定调整后图像的大小
 fx,fy: 相对尺寸,将dsize设置为None,然后将fx和fy设置为比例因子即可
 interpolation:插值方法(INTER_NEAREST,INTER_LINEAR)
'''

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('lenacolor.png',1)
img1 = cv2.resize(img,(100,100))           # dsize
img2 = cv2.resize(img,None,fx=0.5,fy=0.5)  # fx,fy

plt.subplot(131)
plt.title(f'img.shape:{format(img.shape[:2])}')
plt.imshow(img[..., ::-1])
plt.subplot(132)
plt.title(f'img1.shape:{format(img1.shape[:2])}')
plt.imshow(img1[..., ::-1])
plt.subplot(133)
plt.title(f'img2.shape:{format(img2.shape[:2])}')
plt.imshow(img2[..., ::-1])
plt.show()

(2) 最近邻源码缩放

python 复制代码
'''
 img[100,100,3] --> img1 [10,10,3]  scale = 10/100   (5,5)-->5/scale -->(50,50)
'''
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('lenacolor.png',1)
h,w,c = img.shape
h1,w1,d = 100,200,c
h_scale = h1*1.0/h
w_scale = w1*1.0/w
img_new = np.zeros([h1,w1,d],np.uint8)

for i in range(h1):
 for j in range(w1):
     img_new[i,j] = img[int(i/h_scale),int(j/w_scale)]

plt.subplot(121)
plt.title(f'img.shape:{format(img.shape[:2])}')
plt.imshow(img[..., ::-1])
plt.subplot(122)
plt.title(f'img_new.shape:{format(img_new.shape[:2])}')
plt.imshow(img_new[..., ::-1])

(3) 最近邻

python 复制代码

3.2 平移变换

python 复制代码

3.3 错切变换

python 复制代码

3.4 镜像变换

python 复制代码

3.5 旋转变换

python 复制代码

3.6 透视变换

python 复制代码

3.7 最近邻插值、双线性插值

python 复制代码
相关推荐
AI决策者洞察16 分钟前
Vibe Coding(氛围编程):把代码交给 AI 的瞬间,也交出了未来的维护权——慢慢学AI162
人工智能
德育处主任22 分钟前
终结开发混乱,用 Amazon Q 打造AI助手
人工智能·aigc
铁锚24 分钟前
在MAC环境中安装unsloth
人工智能·python·macos·语言模型
学行库小秘33 分钟前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
XIAO·宝1 小时前
机器学习--数据预处理
人工智能·机器学习·数据预处理
爱喝奶茶的企鹅1 小时前
Ethan独立开发新品速递 | 2025-08-21
人工智能
爱喝奶茶的企鹅1 小时前
Ethan开发者创新项目日报 | 2025-08-21
人工智能
算家计算1 小时前
字节跳动开源Seed-OSS-36B:512K上下文,代理与长上下文基准新SOTA
人工智能·开源·资讯
THMAIL1 小时前
大模型“知识”的外挂:RAG检索增强生成详解
人工智能
汀丶人工智能1 小时前
AI Compass前沿速览:DINOv3-Meta视觉基础模型、DeepSeek-V3.1、Qwen-Image、Seed-OSS、CombatVLA-3D动
人工智能