Redis学习路线(6)—— Redis的分布式锁

一、分布式锁的模型

(一)悲观锁: 认为线程安全问题一定会发生,因此在操作数据之前先获取锁,确保线程串行执行。例如Synchronized、Lock都属于悲观锁。

  • 优点: 简单粗暴
  • 缺点: 性能略低

(二)乐观锁: 认为线程安全问题不一定会发生,因此不加锁,只有在更新数据时判断有没有其他线程对数据做了修改,如果没有修改则认为是安全的,自己才能更新数据;如果已经被其它线程修改,说明发生了安全问题,此时可以重试或异常。

  • 优点: 性能好
  • 缺点: 存在成功率低的问题

(三)常见的实现方式:

  • 版本号法: 通过 id-stock-version结构,通过查询的version与本次是否相同来判断是否被修改。
  • CAS法: 是版本号法的改良版,是用 old-query-new的结构,通过第一次query出来的stock,与第二次提交的stock是否一致,若一致则 old = new;

二、Redis的分布式锁

(一)分布式锁的作用: 作为公用JVM锁监视器,集群中的每台JVM都能获取锁监视器监测的线程,多个JVM内部同步了线程执行。

(二)分布式锁的需求: 多进程可见、互斥、高可用、 高性能、安全性...

(三)常见分布式锁的差异:

MySQL Redis Zookeeper
互斥 利用mysql本身的互斥锁机制 利用setnx这样的互斥命令 利用节点的唯一性和有序性实现互斥
高可用
高性能 一般 一般
安全性 断开连接,自动释放锁 利用锁超时时间,到期释放 临时节点,断开连接自动释放

(四)Redis实现分布式锁

1、获取锁:

  • 互斥: 确保只有一个线程获取锁。SETNX lock thread1

2、释放锁

  • 手动释放: DEL lock
  • 过期释放: EXPIRE lock 5

(1)通过 SET 操作 实现原子性操作: SET lock thread1 EX 10 NX,意思是创建一个lock缓存,值为thread1,保持10s时间,NX为互斥操作

(2)当锁获取失败时的方法:

  • 阻塞式获取锁: 一直等待到有线程释放锁。(对CPU资源消耗高)
  • 非阻塞式获取锁: 失败就不再尝试获取锁。

3、代码实现分布式锁

(1)需求: 定义一个类,实现Redis分布式锁功能。

java 复制代码
public class SimpleRedisLock implements ILockService {

    private static final String LOCK = "lock:";

    private String threadName;

    private StringRedisTemplate redisTemplate;

    public SimpleRedisLock() {
    }

    public SimpleRedisLock(String threadName, StringRedisTemplate redisTemplate) {
        this.threadName = threadName;
        this.redisTemplate = redisTemplate;
    }

    @Override
    public boolean tryLock(long timeoutSec) {
        //1、获取锁
        Boolean absent = redisTemplate.opsForValue().setIfAbsent(LOCK + threadName, String.valueOf(Thread.currentThread().getId()), timeoutSec, TimeUnit.SECONDS);
        return Boolean.TRUE.equals(absent);
    }

    @Override
    public void unlock() {
    	//2、解锁
        redisTemplate.delete(LOCK + threadName);
    }
}

四、基于Redis的分布式锁优化------Redisson对象

(一)基于setnx实现的分布式锁存在的问题

  • 不可重入: 同一个线程无法多次获得同一把锁
  • 不可重试: 获取锁只尝试一次就返回false,没有重试机制
  • 超时释放锁: 锁超时释放,虽然可以避免死锁,但在业务耗时过长,也会导致锁释放,存在安全隐患。
  • 主从一致性: 如果Redis提供了主从集群,主从同步存在延迟,当主宕机时,如果从同步主中的所数据,则会出现锁实现。

(二)实现分布式锁的常用对象------Redisson

1、概念: Redisson是一个Redis的基础上实现的Java驻内存数据网络(In-Memory Data Grid)。提供了一系列分布式的Jav常用对象,还提供了许多分布式服务,其中包含了各种分布式锁的实现。

2、分布式锁的种类 官网地址: https://redisson.org

  • 分布式锁(Lock)和同步器(Synchronizer)
    • 可重入锁(Reentrant Lock)
    • 公平锁(Fair Lock)
    • 联锁(Multi Lock)
    • 红锁(Red Lock)
    • 读写锁(ReadWrite Lock)
    • 信号量(Semaphore)
    • 可过期性信号量(PermitExpirableSemaphore)
    • 闭锁(CountDownLatch)

3、Redisson的基本使用

xml 复制代码
<dependency>
	<groupId>org.redisson</groupId>
	<artifactId>redisson</artifactId>
	<version>3.13.6</version>
</dependency>
java 复制代码
@Configuration
public class RedisConfig {
	@Bean
	public RedissonClient redissonClient() {
		//配置类
		Config config = new Config();
		//连接redis
		config.useSingleServer().setAddress("redis://192.168.92.131:6379").setPassword("123321");
		//创建客户端
		return Redisson.create(config);
	}
}
java 复制代码
@Resource
private RedissonClient redissonClient;

@Test
void testRedisson() throws InterruptedException {
	//	获取锁(可重入),指定锁名称
	RLock lock = redissonClient.getLock("anyLock");
	//	尝试获取锁,参数分别是: 获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
	boolean isLock = lock.tryLock(1, 10, TimeUnit.SECONDS);
	//	判断释放获取成功
	if(isLock){
		try{
			System.out.println("执行业务");
		}finally{
			//释放锁
			lock.unlock();
		}
	}
}

4、Redisson可重入锁原理

(1)可重入锁是什么?

可重入锁是指一个线程可以多次获取一把锁的锁获取机制。

(2)ReentrantLock可重入原理

当线程获取锁时,如果有线程占用锁,就检查该线程是否是自己本身,若是自己则再一次尝试获取锁,每执行一次尝试获取锁,就会有个重入计数器记录线程重入的次数,在本次方法执行结束后释放锁,重入计数器相应减一,直到整个方法执行完,才能完整的将锁释放掉。

(3)基于Redis的可重入锁的实现方式

流程: 判断锁是否存在(若不存在,则获取锁并添加线程标识,设置锁有效期,执行业务,执行完毕后依旧需要判断锁的归属以及锁计数状态) 》判断锁标识是否是自己(若是,则锁计数+1) 》 若不是,获取锁失败 》

lua脚本

lua 复制代码
local key = KEYS[1];
local threadId = ARGV[1];
local releaseTime = ARGV[2];

--1、判断当前锁是否是自己
if (redis.call("HEXISTS", key, threadId) == 0) then
    -- 不是,则直接返回
    return nil;
end
-- 如果是,则计数器-1
local count = redis.call("HINCRBY", key, threadId, -1);

--2、判断统计数是否为0
if (count > 0) then
    -- 统计数不为零,则重置计时器
    redis.call("expire", key, releaseTime);
else
    --统计数为零,则释放锁
    redis.call("del", key);
    return nil;
end

5、multiLock,主从一致性

(1)产生原因: 多台Redis,主节点主要存储最新的数据,从节点需要同步数据,在数据同步过程中,会产生延时,因为某些异常导致了主节点宕机了,从节点的数据就不一致并且因为锁对象锁定的redis宕机了,所以锁就失效了,产生了之前所提到的所有分布式安全问题。

(2)解决方法: 联锁机制。

(3)联锁机制的主从一致性的解决方式: 通过获取Redis集群的所有锁,只有获取了Redis集群的所有锁才能进行数据更新。

(4)Redssion的联锁: MultiLock

6、Redisson的锁重试以及WatchDog机制

(1)Redisson的锁重试机制的基本流程: 可自行查看RedissonLock类的重试锁机制和释放锁机制

  • 将等待时间,释放时间,统一转换为毫秒级
  • 第一次尝试获取锁(若返回的TTL为null,说明获取到了)
    • 判断是否获取锁(阻塞等待结果返回)
      • 判断锁释放时间是否为默认(传参了-1,表示默认),若为默认则使用WatchDog监控时间(30s),否则以传入的参数为准
      • 使用异步释放函数,函数里包含了可重入锁实现的脚本(结果返回到一个Future类)
  • 若未获取到锁,则将等待时间减去获取锁的那段时间,并且加以判断等待时间是否不足(若不足,则放弃重试返回错误信息)
  • 订阅当前尝试获取锁的线程标识(阻塞等待剩余等待时间,若还是没有释放锁的信号,则取消订阅并返回错误信息),当释放锁脚本中publish命令执行后,开始进行锁获取
  • 订阅到锁信号
    • 判断等待时间是否充足(等待时间先被减去等待信号的时间,计算结果若小于零,则返回错误信息)
    • 若充足,则循环尝试获取锁,直至锁成功获取,或等待时间不足返回错误(循环尝试并不是一直循环,只有在获取到锁信号的时候才会尝试获取)

三、分布式锁使用过程中的相关问题

(一)数据超量修改

1、产生原因: 由于多线程的参与,功能模块的方法之间执行顺序就会有差异,那么当多个线程由于操作顺序不同可能都查询到了库存还有剩余,都会去执行扣减库存的操作,这样原本库存数 < 请求线程数,就造成了库存直接变负的情况。

2、解决方案: 加锁,保持用户访问时持有锁才能修改操作。

3、加乐观锁和加悲观锁对问题解决效果

(1)加乐观锁: 由于是通过对更新前后数据变化进行判断是否能够更新数据,同时访问的线程,在线程 a 访问更新后,线程 b 由于更新前后访问的数据不一致,导致线程更新失败,同时在同一时期访问的线程全部失败,所以它的效率会极差,但依旧可以完成业务。

(2)加悲观锁: 由于线程 a 获得了锁,进入了访问更新阶段,但线程 b 并未获取锁而阻塞,若因为没有锁重试机制,可能会导致大量线程失败,相较于乐观锁的方式,成功率显然有所提升,并且其安全性也获得了提升,不会因为同一个用户的多次相同请求而多次更新。

(二)集群状态下,锁功能失效

1、产生原因: JVM内部维护了一个锁监视器,在同一个userid下,认为这个线程是同一个线程,但是当有两个或更多的JVM集群出来,而锁监视器并没有锁定同一个线程,所以才会有并发安全问题。

2、解决方案: 采用分布式锁

(三)业务阻塞导致锁超时释放

1、原因: 线程被阻塞,分布式锁超时被释放,导致线程运行混乱。

2、解决方法: 在业务完成后,先检查锁的标识是否一致,再判断是否释放锁。

(四)超时释放锁

1、产生原因: 由于JVM的垃圾回收机制,线程在释放锁之前可能会遭遇阻塞,造成超时释放锁

2、解决方法: 将判断表示与释放锁形成原子性。

3、实现方法: 使用Lua脚本,编写多条Redis,保证Redis命令的原子性。

3、Lua脚本的使用方法: Redis提供了一个回调函数,可以调用脚本。

sh 复制代码
EVAL "return redis.call('set', KEYS[1], ARGV[1])" 1 name Rose

4、释放锁的业务流程

  • 获取锁中的线程标识
  • 判断是否与指定标识(当前线程标识)一致
  • 如果一致则释放锁(删除)
  • 如果不一致则什么都不做
相关推荐
阿波罗.201225 分钟前
Zookeeper 客户端 .net访问框架 ZookeeperNetEx项目开发编译
分布式·zookeeper
Bug退退退1231 小时前
RabbitMQ 工作模式
java·分布式·rabbitmq
暮乘白帝过重山1 小时前
为什么要写RedisUtil这个类
redis·开发·暮乘白帝过重山
ytttr8733 小时前
matlab通过Q学习算法解决房间路径规划问题
学习·算法·matlab
持之以恒的天秤4 小时前
Redis—哨兵模式
redis·缓存
听风ツ6 小时前
固高运动控制
学习
芥子沫6 小时前
Redis 持久化详解、使用及注意事项
redis·内存数据库
西岭千秋雪_6 小时前
Redis缓存架构实战
java·redis·笔记·学习·缓存·架构
XvnNing6 小时前
【Verilog硬件语言学习笔记4】FPGA串口通信
笔记·学习·fpga开发
snoopyfly~6 小时前
Ubuntu 24.04 安装配置 Redis 7.0 开机自启
linux·redis·ubuntu